
Secure mobile business information processing
Nicolai Kuntze, Roland Rieke

Fraunhofer Institute for Secure Information Technology
Darmstadt, Germany

e-mail: {nicolai.kuntze|roland.rieke}@sit.fraunhofer.de

Günther Diederich, Richard Sethmann
Institut für Informatik und Automation

Hochschule Bremen, Germany
e-mail: {Guenther.Diederich|Richard.Sethmann}@hs-bremen.de

Karsten Sohr, Tanveer Mustafa
Technologie-Zentrum Informatik, Universität Bremen, Germany

e-mail: {sohr|tanveer}@tzi.de

Kai-Oliver Detken
DECOIT GmbH, Germany
e-mail: detken@decoit.de

Abstract—An ever increasing amount of functionality is in-
corporated into mobile phones—this trend will continue as
new mobile phone platforms are more widely used such as
the iPhone or Android. Along with this trend, however, new
risks arise, especially for enterprises using mobile phones for
security-critical applications such as business intelligence (BI).
Although platforms like Android have implemented sophisticated
security mechanisms, security holes have been reported [9]. In
addition, different stakeholders have access to mobile phones
such as different enterprises, service providers, operators, or
manufacturers. In order to protect security-critical business
applications, a trustworthy mobile phone platform is needed.
Starting with typical attack scenarios, we describe a security
architecture for Android mobile phones based on the concepts
of Trusted Computing. In particular, this architecture allows for
a dynamic policy change to reflect the current environment the
phone is being used in.

Keywords-Trusted Computing; Android; Mobile Business Pro-
cessing; Mobile Trusted Module

I. INTRODUCTION

In order to support and improve business decisions and
cooperate competitiveness, IT systems are used to collect and
process business data. These business intelligence systems (BI
systems) strive to combine formerly spread and fragmented
data from different parts of a company. Through analysis
and transformation, data is turned into information, a basis
for strategic decisions. The increased availability and system
performance of mobile systems allows flexible on site data
collection and processing, thus extending business intelligence
to mobile business intelligence. At the same time different
wireless communication properties and heterogeneous system
environments must be considered. Furthermore, the use of BI
tools on mobile devices (e.g., mobile phones, netbooks, smart
phones) requires to securely adapt to different physical and
networking environments due to a changing work context.
The example illustrated in Figure 1 shows different security
policies an external service employee is affected by when
using a mobile device to securely connect to the BI platform
of the customer company.

In the initial state, the employee and his mobile system
are part of the service company’s network. At this time, the
employee has system and data access according to the security

policy of his employer’s company. Taking up or continuing his
work for the customer, the employee switches to a security
policy that has been predefined and securely distributed for
the purpose of this cooperation. Afterwards he contacts the
security gateway of the customer company and authenticates
himself. The security gateway verifies the authentication and
checks information on the system state of the mobile device
(such as the patch status of the client operating system, anti-
virus software, firewall, and security settings) against the
previously deposited version of the cooperation security policy.
If the mobile device lacks mandatory features (e.g., VPN
client, up-to-date version of security policy), missing data or
software will be provided and the check must be repeated. If
the client state complies with the cooperation security policy, a
secure VPN connection will be established between the mobile
device and a business intelligence portal in the demilitarized
zone of the customer network. Using the services of the
business intelligence portal, the employee has limited access to
the business intelligence platform within the customer intranet.
Access is restricted to services needed to fulfill the employee’s
contract, e.g. getting a service order, accessing data referring
to this order, delivering results (new data, reports), closing his
own open service orders. Main challenges in this use case
include the secure change in security settings and network
membership, the reliable collection and secure transmission
of the mobile system state as well as the usability and
transparency of the corresponding functions.

The contribution of this paper is to describe a solution
architecture for the mobile business scenario based on Trusted
Computing. This architecture is tailored towards the challenges
posed by the nomadic nature of mobile phones. In this sense,
these requirements are different from the PC world with
a usually fixed environment. To make the discussion more
practical, we presume that the mobile BI client runs Android,
although our solution is not limited to one specific platform.

The remainder of the paper is organized as follows. Sec-
tion II briefly describes a security analysis of the mobile BI
application in the context of Android. Section III explains
the main concepts of Trusted Computing in mobile systems.
Section V outlines our security architecture for the mobile
BI application based on Trusted Computing considering the



Fig. 1. Different security policies in mobile business intelligence infrastruc-
tures

assumptions formulated in Section IV and resulting in con-
clusions in Section VI.

II. SECURITY ANALYSIS

Recall that we are using Android as an illustrative example.
We begin by describing several attack vectors possible on that
platform. Later in the course of the paper, we demonstrate how
our security architecture addresses these security problems.
First, we briefly explain the basic Android security concepts.

A. Android security

Android is a Linux platform for mobile phones with a Java
middleware on top of the OS. This way, Android applications
are usually Java-based, although native code can also be
accessed through the Native Development Kit (NDK).

Android has two basic parts of security enforcement [2].
First, applications run as Linux users and thus are separated
from each other. This way, a security hole in one application
does not affect other applications. However, there is also a
concept of inter-process communication (IPC) between dif-
ferent applications, or more precisely, between the Android
components of the applications such as activities and services
[2]. The Java-based Android middleware implements a ref-
erence monitor to mediate access to application components
based upon permission labels defined for the component to be
accessed. Any application requires an appropriate permission
label before it can access a component (mostly, but not
necessarily, of another application). A number of features
further refine Android’s security model. One example is the
concept of shared user IDs, i.e., different applications can
share the same user ID if they are signed by the same developer
certificate. Another refinement are protected APIs: Several
security-critical system resources can be accessed directly
rather than using components. Examples of such resources
are INTERNET (allows an application to open arbitrary net-
work sockets, i.e., to have full access to the Internet) and
PROCESS OUTGOING CALLS (allows an application to
monitor, modify, or abort outgoing calls). In order to mediate
access to such resources, additional security checks have been

implemented. In addition, permissions are assigned protection
levels such as “normal”, “dangerous”, and “signature”.

Permissions are requested during installation and cannot be
changed at runtime. The user must decide whether permissions
are granted or not and thus decides on the security of the
device. Either all requested permissions are granted or the
installation will not be completed, which tempts users to grant
all requested permissions despite possible security drawbacks.

B. Deducing security requirements from attack scenarios

Let us now assume that the BI application’s client runs on
the Android platform employing the aforementioned security
concepts. Furthermore, we assume that a VPN connection
between the mobile client and the BI server exists. Users are
authenticated by passwords, and based upon the authentication
process, receive roles from an LDAP directory at the server
side. A mechanism has been implemented which allows one to
change security policies depending on the context the mobile
devices are used in (cf. introduction).

An attacker’s goal may be to have unauthorized access to
company data (industrial espionage) or to manipulate BI data
(sabotage). In particular, the following attack scenarios are
conceivable on the client side:

• Scenario #1: In the Linux kernel is a security hole (e.g.,
a buffer overflow) which allows an attacker to become
root and for which no patch is available yet (zero day
exploit). An end user installs an application exploiting
this security hole. As indicated above, it is hard for end
users to assess the consequences of confirming security
warnings, in particular, if Internet access is requested.
The rogue application gathers user credentials (e.g.,
through key logging) to obtain access to the BI server
and then manipulates data in the backend.

• Scenario #2: There is a security bug in the security mech-
anisms for Android’s IPC which allows the attacker to
access components of other applications, e.g., through an
erroneous implementation of the shared user ID concept
[6]. A patch of the Android middleware, however, is
available. Further, we assume that the end user has not
patched the Android middleware and has installed an
application exploiting this hole. An attacker then may
have unauthorized access to the mobile BI client and/or
to the VPN client.

• Scenario #3: An attacker has reverse engineered the
protocol between the mobile client and the BI server
and in particular has sniffed credentials of a legitimate
user such as passwords. Then the attacker places his
own device into the company intranet (e.g., as a service
technician) and installs his own “mobile BI client” trying
to access the BI server with the help of the credentials.

• Scenario #4: A mobile phone has been stolen or lost. An
attacker gets access to the phone and at the same time
to the BI application’s credentials. This way, he can read
from or write data to the BI database.

• Scenario #5: A security policy mechanism for mobile
phones has been put in place in the enterprise, i.e., a



phone is only permitted to install an application if the
policy allows this. An attacker then might try to attack
this policy mechanism. For example, he could try to
modify the policy on transition. In addition, he could also
attempt to change/erase the policy on the phone.

• Scenario #6: An attacker pretends to be the customer’s
security gateway, gathering information on the current
system status and security policy of the mobile device.
In addition to this, the attacker may use the fake security
gateway to establish malware or false data on the mobile
device.

• Scenario #7: An attacker pretends to be a legitimate
mobile client, gathering information on the required mea-
surement values in order to launch a targeted attack on
the security gateway of the network.

• Scenario #8: The security functions used by the employ-
ees are too complex or their results too intransparent
for the employee to verify the security state of his own
system. In this case, the employee may be unassured of
or might even make wrong assumptions on the system
security state.

• Scenario #9: The network with the lower security policy
might infect the other network via the mobile device.

At this point, we do not claim that this list is exhaustive.
We only want to demonstrate common risks of mobile phone
platforms jeopardizing the security of sensitive mobile appli-
cations. We devised a set of rules that, when followed by a
mobile phone platform, can address the aforementioned attack
scenarios:

• Only applications and data that have been authorized by
the (service) enterprise’s security policy can be installed
on the mobile phone. The service enterprise security
policy might accept customer company software (e.g.
VPN, security policies). The enforcement mechanisms
cannot be circumvented by rogue applications. (addresses
Scenario #1, #2 and #6)

• The BI server can determine the patch level of the mobile
phone. A possibly attacked mobile phone cannot lie w.r.t.
this information. (addresses Scenario #2)

• Only devices that have been authorized by the enterprise’s
security policy can access the BI server. (addresses Sce-
nario #3)

• Compromised or stolen devices are not allowed to access
the BI server any more. (addresses Scenario #4)

• Policies must be cryptographically secured in a way
that the authenticity and integrity can be guaranteed.
Additionally, there is no way to switch off the policy
mechanism on the phone. (addresses Scenario #5).

• Systems involved in the business intelligence platform
use machine certificates to provide credentials on their
identity. (addresses scenario #6 and #7)

• The security functions will be designed for easy use
and clear information. Statements on the current security
setting are correct, non-ambiguous und correspond to the
user level of expertise. (addresses scenario #8)

• The data on the mobile device used in one network must
be separated against the use in the other network by role-
based access control (RBAC). (addresses scenario #9)

We show in the course of this paper that our security
architecture can thwart the aforementioned attack scenarios
and in particular satisfies these security requirements. It is
noteworthy that the security architecture must guarantee that
the enforcement mechanisms for the security policy cannot
be circumvented on the phone. In particular, the patch-level
status must be communicated trustworthily to the BI server.
Android’s security mechanisms (e.g., sandboxing applications)
do not provide such a level of trust for security-critical
applications as vulnerabilities are likely to occur (cf. Scenario
#1 and #2).1 On exploiting security holes in the OS kernel,
rootkits could be installed, which, for instance, could lie about
the security state of the phone. A rootkit could also overwrite
a locally stored policy if no protected memory area (beyond
the means of the compromised OS) is provided. Software-
based solutions for patching, as commonly used in the PC
world, do not help in this scenario since a compromised device
can always lie about its current patch level. In order to meet
the aforementioned security challenges, a trust anchor on the
phone is required which cannot be subverted by a Trojan horse.
Providing an architecture based on this trust anchor is the topic
of the following sections.

III. TRUSTED COMPUTING IN MOBILE SYSTEMS

As shown in Section II, hardware-rooted trust anchors are
required to meet the security challenges inherent to the use
case in Section I. For the mobile domain, several approaches
are already available providing for strong security means [8].
Specifically, ARM trust zones [11] and TI’s OMAP approach
[3] are potential platforms. Moreover, the Trusted Computing
Group [10] introduced concepts for mobile phones allowing
for an authentication of behaviour of devices attached to a
network. In the following, we present a short overview of
Trusted Computing and the implications for mobile devices.

A. Trusted Computing

The Trusted Computing technology as defined by the
Trusted Computing Group [5] is a technology that implements
consistently behaving computer systems. This consistent be-
havior is enforced by providing methods for reliably checking
a system’s integrity and identifying anomalous and/or un-
wanted characteristics. These methods depict a trusted sys-
tem’s base of trust and thus are implemented in hardware, as
it is less susceptible to attacks than the software counterparts.

To successfully realize stringently reliable modules, several
cryptographic mechanisms are implemented as a tamper-proof
hardware component, namely the Trusted Platform Module
(TPM). This chip incorporates strong asymmetric key cryp-
tography, cryptographic hash functions and a random number
generator that is capable of producing true random numbers

1For a more detailed security analysis of Android see [9]. Specifically, the
authors discuss the complexity and modifications of the Linux kernel, which
likely make the Android platform error-prone.



instead of pseudo random ones. Additionally, each trusted
system is equipped with a unique key pair whose private key is
securely and irrevocably stored inside the chip. The chip itself
is the only entity to read and use this key for e.g. signing or
encryption.

This concept provides a foundation for approving and
establishing system integrity because the TPM itself cannot
be compromised or spoofed by third party software running
on the main processor. This is commonly used to measure
system integrity and to ensure a system is and remains in a
predictable and trustworthy state that produces only accurate
results.

a) Trust for Measurement: The key concept of Trusted
Computing is the establishment and extension of trust from an
initially trusted security anchor up to other components of a
system during boot-up. Each component loaded while booting
up the system is measured before execution by computing a
SHA-1 digest value of it. The first component of this cycle
acts as a security anchor and must be initially trusted since
its integrity cannot be measured. This anchor is called Core
Root of Trust for Measurement (CRTM) and is implemented
as an BIOS extension to be executed before any other BIOS
code [7]. Thus, the CRTM can measure the BIOS and the
platform’s firmware. Each subsequent component involved
in the boot-up process thereupon measures its successive
component. Each measurement is stored in form of hash-
chains in Platform Configuration Registers (PCRs) on the
TPM. These 160-bit registers are in the volatile storage on
the chip and can exclusively be updated by calling the TPM
command TPM_EXTEND. This command includes the old
value of a register in the calculation of its new value according
to equation 1 thus preventing manipulation of registers.

PCRi = SHA-1(PCRi | newvalue) (1)

This basically implements a non-commutative one-way
function preventing from deleting and/or overwriting digest
values in a PCR. This also enables tracking of the chrono-
logical order in which values were applied to the register.
These hash chains stored in PCRs allow for reports on the
development of the system since the start of the CRTM. Each
PCR is initialized with zeros upon system start and then
extended with measured data. Thus, other entities can analyze
the current state of a remote system and the history since the
last system start. This type of boot-up is called Trusted Boot
Process. Moreover, the successive process of extending trust
with each measurement is commonly referenced to build up a
Chain of Trust. To reproduce and verify a platform register’s
value in hindsight, every TPM_EXTEND command executed
must be tracked in a log. In the case of runtime measurement,
this must be done by the operating system resulting in a log
called Stored Measurement Log (SML).

b) Trust for Reporting: Another main concept of Trusted
Computing is Remote Attestation, a process to prove the
trustworthiness of a Trusted Platform to an external party. To
verify a platform’s integrity, a subset of PCRs together with

a log of all measurements since startup (Stored Measurement
Log, SML) is sent to the external party signed by the TPM
with a so-called Attestation Identity Key (AIK). The PCR
values can then be compared with re-calculated values using
the chronological order of measured components logged in
the SML. Measurements include all events related to the start
of software during the boot phase of a system and later on as
part of the operation of the running system. From the SML, no
insight on the performed actions of loaded applications can be
gained as it only documents that a certain software was started.
AIKs represent pseudonymous identities. So-called privacy
CAs certify that a particular AIK was generated in a TPM
with a particular Endorsement Key (EK), the Root of Trust for
Reporting (RTR). The privacy CA also checks platform and
EK certificates. The EK could identify a particular TPM and
is therefore (for privacy reasons) not used for signing.

B. Mobile requirements and concepts

As discussed in the use case presented in Section I, mo-
bile environments provide for specific requirements towards
devices used and their infrastructure. Specifically, ownership
and exposure to hardware based attacks are different to the
standard PC use case where the equipment is under the direct
(physical) administrative control of the owner. Due to the high
risk of theft and malicious users protection of mobile devices
must also consider direct (physical) attack vectors.

Due to the operation of the mobile devices in hostile
environments means are required to ensure the correct state of
the device. These means must take into account the operation
of the device in a potentially hostile environment. As shown in
Section II, one important aspect is to ensure that data stored
on the mobile device is only accessible if the device is in
an appropriate state. Therefore, a device internal reference
and verifier is required to enforce this particular state e.g.
using Reference Integrity Measurement certificates (see [1]).
Enforcement is implemented using a secure bootstrap process.
Such a secure boot does not only allow for status reporting,
but also verifies the measurement value before starting the
respective component.

Multiple stakeholders being active on one device are a
second constraint specific to the mobile domain. A single
mobile device is operated by different stakeholders such as the
network operator, service provider, or the end user. Isolation of
these different interests is required as it is shown for example
by Kasper et al. [4].

The TCG [10] provides for an early standard introducing
concepts for mobile phones based on a so-called Mobile
Trusted Module. Isolation and state enforcement are core
concepts in this specification.

IV. PLATFORM ASSUMPTION

In accordance with the requirement specifications of mobile
devices and the BI scenarios, we specified the following
platform assumptions for the first prototype. The core element
of the platform is represented by the VPN gateway. Addi-
tionally, a management server (e.g., RADIUS), a directory



Fig. 2. Platform overview

server (e.g., LDAP), and a certification authority server are
necessary. In the first step, the user must be identified for
the correct access with the VPN gateway. All criteria are
available on the directory server and assign the user to different
profiles and user groups. Each user group has different security
policies for different access rights. The management system
synchronizes the user information with the directory server in
regular intervals. This implies that users from the directory
server with VPN access rights, even if they are not yet
available on the management server, will synchronize with
all user group membership automatically after some time.
As an option, a public certification authority (CA) can be
adapted. If a new user is created on the management server, a
certificate will apply. The management server platform is then
a registration authority. The VPN gateway must be configured
in a way that all requested clients will be authenticated via the
management server. Therefore, the gateway site does not need
adaptations for a new user. That will be done automatically
by the communication with the management server.

Next to the authentication of the user, our platform checks
the hardware of the mobile device using the specification
Trusted Network Connect (TNC) from the Trusted Computing
Group (TCG) with the Mobile Trusted Module (MTM). After
the establishment of a VPN connection, the network access
of the mobile device is limited to the quarantine zone. Within
this area, it is only possible to update software components
of the mobile device like anti-virus-software or operating
system patches. Access to other network areas of an enterprise
network is not permitted. Information about the status of the
mobile device is available by the access requestor (AR) on
the client-site. The AR includes the network requestor (as a
component of the VPN client), the TNC client (as an interface
between the network access requestor and plug-in software),
and the integrity measurement collector (describes the plug-
ins which allow different software products like anti-virus
software to communicate with TNC).

In detail, the following steps initiate a mobile device com-
munication as depicted in Figure 2:

1) A VPN connection is established.
2) The management server (TNC server) initializes an

integrity check.
3) The mobile device (TNC client) collects integrity mea-

surement (IM) information using the local Integrity
Measurement Clients (IMC) on the mobile device (see
also Figure 3).

4) The management server (TNC server) forwards the IM
information for a check to the integrity measurement
verifier (IMV).

5) The integrity measurement verifier (IMV) checks the
IMs and sends the results with a recommendation to
the management server (TNC server).

6) The management server (TNC server) takes the access
decision und forwards this information to the VPN
gateway (PEP) and the mobile device (AR).

7) The VPN gateway (PEP) allows or does not allow the
access to the network for the mobile device (AR).

Summarized, the integration of the MTM allows for an in-
depth check of the software components on the mobile device.
This simplifies the detection of rootkits. Furthermore it is
possible to sign and encrypt messages with key material of
the MTM. That means a strong security check of the origin
of the information.

VPN-Client

TNC-Client

IMC1

IMC2

IMC3

req

read read

read

Fig. 3. Functional component model - client

V. SOLUTION ARCHITECTURE

In the classic approach to policy enforcement, Policy Deci-
sion Points (PDPs) and Policy Enforcement Points (PEPs) are
considered as centralised entities under the assumption that all
devices are operated in a controlled environment. In the use
case considered, devices are operated in (potentially) hostile
environments where even the end users cannot be considered
as friendly as devices may get stolen or due to conflicting
interests in the business case.

Local enforcement of policies on the device allows for
an extended control of the device owner into the leaves of
the infrastructure establishing a trust relation into the device.
Figure 4 depicts the split of the PDP and PEP functionalities
into the domains of the device-side policy enforcement and
the infrastructure point of view. Both sets of policies need
to be derived from one central policy definition to allow for
coherence.



Acceptance of third party policies on the end device needs
to be rooted into the policies enforced by the local PDP.
Order/priorities of policies are required to ensure that no
third party policy conflicts with owner policies and interests.
Therefore, we propose (i) to split PDP and PEP into device-
and infrastructure-related entities, (ii) to establish policies
reflecting the split of concerns, (iii) to assure that PEPs and
PDPs on the device and infrastructure are in relation to each
other to guarantee proper functionality, and (iv) to support
multiple stakeholders by introducing isolation.

Policy Description PDP PEP

central PD

client PDP

infra. PDP

client PEP

infra. PEP

Fig. 4. Decomposition of PEP and PDP

Composed Identity

User Identity

Application Identity

Device Identity

operating on

running on

uses

Fig. 5. Definition of Identity for mobile devices

In standard PC architectures, the status of the device used
is not considered in the authorisation of actions. Actions
are authenticated through the relation to a certain user and
his presented identity credentials, respectively. To take the
requirements from Section II into account, additional identity
definitions for the device and software are required. This
extension to the definition of an identity is shown in Figure 5.
An identity is composed of the identity of the end user
based on well-known identity credentials like passwords, smart
cards, or biometric features. Additionally, the device identity
and configuration are considered. This identity is based on a
unique and unforgeable credential embedded in the device and
the state of the device as well as its configuration. The third
factor is the status and configuration of the additional software

components installed on the device. To allow for an integration
of this extended model as presented in Figure 5 with well-
known access control models like RBAC, a composed identity
is introduced which combines the three presented aspects.

In the mobile use case discussed in Section I, authorisation
of actions not only requires the proper identification of the
respective user, but also the attestation of the behaviour of the
device used by the user. Trusted Computing approaches offer
the concepts of remote attestation and, as an extension defined
by the Mobile Phone Working Group, an internal verifier as
part of the MTM.

Attestation of behaviour performs measurements of the
software and its configuration before the execution of the
software. These measurements are then verified, either by an
internal entity or a remote party. Software used on a mobile
device can be differentiated into device functionality provided
by the manufacturer and additional software provided and used
by the owner.

VI. CONCLUSION

Using mobile devices in different environments requires a
secure transition between different security settings compliant
to the corresponding environment. Virtual system environ-
ments enable the use of separate system settings, including
data separation, on the same mobile device. Trusted Comput-
ing mechanisms allow for the integrity of the system state
being checked. Transparent use of these key functionalities
provides a reliable insight to the security state of the mobile
device and therefore the secure transition between different
security settings of mobile devices. The proposed architecture
demonstrates a possible solution for the compliant use of a
mobile device in different security environments, based on a
new combination of currently available technologies. Switch-
ing security environments begins with launching a virtual
environment and contacting the security gateway of the target
network. Using Trusted Computing functionality, the security
gateway checks the integrity of the system as well as the
security settings. On a failed check, the connection will be
refused or limited to a quarantine network and the user of
the mobile device will be informed. After a successful check,
additional setup steps may be carried out, e.g., installing a
VPN client and repeating the integrity check, or a secure
connection will be allowed to use services in a DMZ. The
user of the mobile device may now use these services to work
on critical databases like a BI-server in a customer’s intranet.

ACKNOWLEDGEMENTS

This work was supported by the German Federal Ministry of
Education and Research (BMBF) under the grant 01IS09032
(VOGUE project).

REFERENCES

[1] K. Dietrich, M. Pirker, T. Vejda, R. Toegl, T. Winkler, and P. Lipp. A
practical approach for establishing trust relationships between remote
platforms using trusted computing. Lecture Notes in Computer Science,
4912:156, 2008.

[2] W. Enck, M. Ongtang, and P. McDaniel. Understanding Android
Security. IEEE Security and Privacy, 7(1):50–57, 2009.



[3] P. Gumming. The TI OMAP Platform Approach to SoC. Winning the
SoC revolution: experiences in real design, page 97, 2003.

[4] M. Kasper, N. Kuntze, and A. U. Schmidt. On the deployment of mobile
trusted modules. In Proceedings of the IEEE Wireless Communications
and Networking Conference WCNC 2008, Las Vegas, USA, 2008.

[5] C. Mitchell et al. Trusted Computing. Trusted computing, page 1, 2005.
[6] Open Source Cert Advisory. #2009-006—Android improper

package verification when using shared UIDs, 2009.
http://www.ocert.org/advisories/ocert-2009-006.html.

[7] S. Pearson. Trusted computing platforms, the next security solution. HP
Labs, 2002.

[8] S. Ravi, A. Raghunathan, and S. Chakradhar. Tamper resistance
mechanisms for secure embedded systems. In Proceedings of the 17th
International Conference on VLSI Design, page 605. IEEE Computer
Society Washington, DC, USA, 2004.

[9] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer.
Google Android: A comprehensive security assessment. IEEE Security
and Privacy, 99(PrePrints), 2010.

[10] Trusted Computing Group. TPM Specification Version 1.2 Revision 103.
Trusted Computing Group, 2009.

[11] J. Winter. Trusted computing building blocks for embedded linux-based
ARM trustzone platforms. In Proceedings of the 3rd ACM workshop on
Scalable trusted computing, pages 21–30. ACM New York, NY, USA,
2008.


