
On the deployment of Mobile Trusted Modules
Andreas U. Schmidt,

Nicolai Kuntze, Michael Kasper
Fraunhofer Institute for Secure Information Technology SIT

Rheinstraße 75, 64295 Darmstadt, Germany
Email: {andreas.schmidt,nicolai.kuntze,michael.kasper}@sit.fraunhofer.de

Abstract— In its recently published TCG Mobile Reference
Architecture, the TCG Mobile Phone Work Group specifies a
new concept to enable trust into future mobile devices. For this
purpose, the TCG devises a trusted mobile platform as a set of
trusted engines on behalf of different stakeholders supported by
a physical trust-anchor. In this paper, we present our perception
on this emerging specification. We propose an approach for the
practical design and implementation of this concept and how to
deploy it to a trustworthy operating platform. In particular we
propose a method for the take-ownership of a device by the user
and the migration (i.e., portability) of user credentials between
devices.

I. INTRODUCTION

As a first deliverable within their scope and work pro-
gramme, the Mobile Phone Work Group of the Trusted Com-
puting Group (TCG MPWG) has published a specification [1],
which offers new potentials for implementing trust in mobile
computing platforms by introducing a new, hardware-based
trust anchor for mobile phones and devices. This trust anchor,
called a Mobile Trusted Module (MTM), has properties and
features comparable to a Trusted Platform Module (TPM, see
[2], [3]). Concurrently the MPWG issued a much more uni-
versal security architecture for mobile phones and devices on
a higher abstraction level. The pertinent specification is called
TCG Mobile Reference Architecture (RA) [4] and abstracts a
trusted mobile platform as a set of tamper resistant trusted
engines operating on behalf of different stakeholders. This
architecture offers a high degree on flexibility and modularity
in design and implementation of the trusted components to all
participants in hard- and software development.

An important aspect of the TCG Mobile Reference Ar-
chitecture is the potential to virtualise significant parts of
a trusted mobile platform as trusted software applications
and services. The trusted execution chain for this rests on
the MTM. The implementation of this chip depends on the
security requirements of its specific use-case. For high levels
of protection and isolation, an MTM could be implemented
as a slightly modified Trusted Platform Module (TPM). This
enables cost-effective implementation of new security-critical
applications and various innovative business models, in both
the mobile and generic computing domain [5]–[7].

The present paper discusses the main structural features of
the RA, highlighting the capabilities of the MTM as the main
functional building block. After this technology review, we
propose two basic methods for usage of the RA, namely the

set-up of a trusted subsystem on a device by a remote owner,
and its migration from one device to another.

This paper is organised as follows. In Section II, we explore
the significant parts of the MPWG Reference Architecture. It
is divided into four parts. Subsection II-A gives an overview
of the security architecture, and subsection II-B details the
concepts of the proposed architectural approach for an MTM
and the requirements to virtualise its functionality, whereby a
high security and isolation level is maintained. Furthermore,
we propose a model for remote stakeholder take-ownership in
II-C and migration of trusted subsystems in II-D. In Section
III, we show how such an architecture can be implemented on
trustworthy operating platforms.

II. TCG MPWG REFERENCE ARCHITECTURE

The TCG MPWG has developed an architecture on a high
level of abstraction for a trusted mobile platform, which offers
numerous variations for design and implementation. In this
section, we reflect essential parts of this architecture and an
overview of significant platform components in terms of our
objective.

A. Architectural Overview

A trusted mobile platform is characterised as a set of
multiple tamper-resistant engines, each acting on behalf of a
different stakeholder. Broadly, such an platform has several
major components: trusted engines T E , trusted services T S
customised by trusted resources T R. A general trusted mobile
platform is illustrated in Figure 1.

Fig. 1. Trusted Mobile Platform Architecture

We define a trusted subsystem T SSσ as a logical unit of
a trusted engine together with its interrelated hardware com-
partment. A T SS of a stakeholder σ can formally described



by a tuple

T SSσ = {T Eσ, T Sσ, T Sε, T Rσ,SPσ,SCσ}

In each trusted subsystem T SS either a remote or local
entity acts as a stakeholder, who is able to configure its own
subsystem and define his security policy SPσ and system con-
figuration SCσ within an isolated and protected environment.
The MPWG Reference Architecture specifies the following
principal entities: the local stakeholders Device Owner DO
and User U ; and the remote stakeholders Device Manufacturer
DM, and more general Remote Owners RO (e.g. a commu-
nication carrier, or service provider). The functionality of a
T SS is either based on dedicated resources of an embedded
engine T Eσ , or may be provided by trusted services T Sε of
external engines.

Each subsystem is able to enforce its security policy SPσ

and subsystem configuration SCσ . As a consequence, the
functionality of a trusted subsystem T SSσ is constrained by
the available resources T Rσ with their derived trusted services
T Sσ , by the offered functionality of external trusted services
T Sε, by the security policy SPσ , and finally the system
configuration SCσ of an engine’s stakeholder.

All internal functions executed inside T SSσ are isolated
from other subsystems by the underlying security layer and
is only accessible if a proper service interface is defined and
exported. A T SSσ relies on the reputation of the stakeholder
σ as basis for that trust. Therefore, each stakeholder issues
a security policy SPσ and a set of credentials belonging
to embedded trusted components of its subsystem T SSσ .
This policy contains reference measurements (RIM), quality
assertions and security-critical requirements.

1) Trusted Engines: The most important concept within the
MPWG Reference Architecture is that of trusted engines. The

Fig. 2. Generic Trusted Engine

purpose of a trusted engine is to provide confidence in all its
embedded services, which are internally or externally provided
by the engine. It is a protected entity on behalf of a specific
stakeholder that has special abilities to manipulate and store

data, and to provide evidence of its trustworthiness and the
current state of the engine. Figure 2 shows a generic trusted
engine. In general, each engine has at least following abilities:
• implement arbitrary software functionalities as trusted

and/or normal services,
• provide the evidence for its trustworthiness,
• report the evidence of its current state,
• obtain and use Endorsement Keys (EK) and/or Attestation

Identity Keys (AIK),
• access a set of trusted resources, and
• import and/or export services, shielded capabilities and

protected functionality.
In order to establish a definite categorisation, the MPWG

differentiates engines according to their functional dispensabil-
ity. Therefore, an engine is either dedicated to a mandatory (of
DO or DM) or a discretionary domain (of DO). Engines
inside a mandatory domain are permanently located on a
trusted platform and hold security-critical and essential func-
tionality. All essential services of a trusted mobile platform
should be located inside the mandatory domain, which does
not permit a local stakeholder to remove a remote owner from
the engine. Mandatory engines have access to a Mobile Remote
owner Trusted Module (MRTM) to guarantee that a valid and
trustworthy engine state is always present.

Non-essential engines and services are replaceable by the
device owner DO and should be located inside the discre-
tionary domain. Engines inside the discretionary domain are
controlled by the device owner DO. Discretionary engines
are required to be supported by a Mobile Local owner Trusted
Module (MLTM).

2) Trusted Resources: As illustrated in Figure 2, an internal
trusted service has access to several trusted resources. The
TCG calls these resources Root-Of-Trusts (RoT) representing
the trusted components acting on base of the trusted execution
chain and providing functionality for measurement, storing,
reporting, verification and enforcement that affect the trust-
worthiness of the platform. The following RoTs are defined
for the mobile domain:
• Root of Trust for Storage (RTS),
• Root of Trust for Reporting (RTR),
• Root of Trust for Measurement (RTM),
• Root of Trust for Verification (RTV), and
• Root of Trust for Enforcement (RTE)

Each RoT vouches its trustworthiness either directly by sup-
plied secrets (EK, AIK) and associated credentials, which are
only accessible by authenticated subjects of the stakeholder,
or indirectly by measurements of other trusted resources.
These resources are only mutable by authorised entities of
a stakeholder.

In this paper, we group several logically self-contained RoTs
to simplify the presentation of interfaces and the commu-
nication layer. In a typical arrangement, the RTS and RTR
represent one unit, while the RTM and RTV build another unit
within an T SSσ . However, note that the RTV and the RTM
depend on protected storage mechanisms, which are provided



Fig. 3. Measurement and Verification Process

by the RTS. Thus, it is also plausible to implement all RoTs
together as a common unit within an engine.

RTS/RTR are the trusted resources that are responsible for
secure storage and reliable reporting of information about the
state of trusted mobile platform. An RTS provide PCRs and
protected storage for an engine and stores the measurements
made by the RTM, cryptographic keys, and security sensitive
data. An RTR signs the measurements with cryptographic
signature keys of TSSσ .

RTM/RTV In general, an RTM is a reliable instance to
measure software components and provide evidence of the
current state of a trusted engine and its embedded services.
In the mobile domain, to avoid communication costs, this
functionality is extended by a local verifier, which checks
the measurements against a given Reference Integrity Metrics
(RIM). This process can be done instantly as the measurements
are performed employing a combination of RTM and RTV.
Figure 3 depicts such a Measure→Verify→Extend process.

An RTE is required if an engine uses allocated resources
and services. In this case, such RoT acts as a trusted boot
loader and ensures the availability of all allocated trusted
resources and services within that trusted subsystem.

3) Services of a Trusted Engine: A trusted engine integrates
all functionality by customising available platform resources
as software services. Such a service offers computation, stor-
age, or communication channels to other internal or external
services and applications based on dedicated or allocated
resources. The MPWG categorises them into: trusted, normal,
and measured services.

A trusted service customises trusted resources. Thus, a
trusted service is implicitly supplied with an EK or AIK in
order to attest its trustworthiness. Trusted services are intended
to provide reliable measurements of their current state and
to provide evidence of the state of other normal services or
resources.

Normal services are customising normal resources and
implement functionality, but are not able to provide evidence
of their trustworthiness by own capabilities. However, normal
services can access internal trusted services to use their
provided functionality. Therefore, an internal normal services

is able to vouch its trustworthiness by associated integrity
metrics that have been measured by a trusted service.

B. Mobile Trusted Module

The generic term Mobile Trusted Module (MTM) refers to
a dedicated hardware-based trust-anchor. It is typically com-
posed of an RTS and RTR and has characteristics comparable
to a TPM. According to their design objective the MPWG
distinguishes between MRTM and MLTM. Both must support
a subset of TPM commands as specified in [4]. Additionally,
an MRTM has to support a set of commands to enable local
verification and specific mobile device functionality.

The TCG MPWG Reference Architecture does not exclude
to utilise a TPM v1.2 (or even a TPM v1.1) as an MTM,
if an appropriate interface consisting of a set of commands
conforming to the MPWG specification and associated data
structures are provided. Although it is possible to implement
this architecture upon a standard TPM, we here focus on a
more sophisticated solution based on a Trustworthy Comput-
ing Platform such as EMSCB/Turaya [8]. In this context, we
expect three different solutions for isolation, key management
and protection of T SSσ .

A Standard TPM-based Model uses a non-modified stan-
dard TPM to build the trusted computing base. The secret
keys are stored into a single key-hierarchy on behalf of DO
as specified in [1]. In this case, an adversary or malicious
local owner may be able to access the secret keys of a remote
stakeholder and take control of a remote owner compartment.
A DO can also disable the whole MTM or corrupt mandatory
engines of remote stakeholders.

A Software-based MTM-Emulation Model uses a
software-based allocated MTM -emulation with an isolated
key-hierarchy. All sensitive and security-critical, such as EK
or SRK, are only protected by software mechanisms outside
of the tamper-resistant environment of a dedicated MTM [9],
[10].

Generic MTM-based Model supporting multiple stake-
holders and virtual MTMs. In order to circumvent resulting
drawbacks and mitigate attacks, we favour a solution with a
higher level of security. For this reason, we adopt the proposed
secure co-processor variant of [9] and describe a generic
MTM with support for multiple stakeholder environments.
In a cost-efficient scenario, the trusted mobile platform is
implementable based on a single generic MTM and several
virtualised MTMs for each trusted engine. Hence, at least
one dedicated MTM has to be available and additionally a
unique vMTM has to be instantiated in each trusted subsystem
T Sσ . In such case, a physically bounded MTM in the platform
acts as a master trust anchor and offers MRTM and MLTM
functionality with respect to its specific use case.

A Trusted Software Layer offers a vMTM Proxy Service
to all embedded trusted engines T Eσ . The main task of
this service is to route MTM commands from a T Eσ to
its dedicated instance vMTMσ . The advantage is that all
security-critical MTM commands are tunnelled to vMTMσ



Fig. 4. MTM Architecture supporting multiple Stakeholders

and are executed within the protected environment of the
dedicated MTM.

Figure 4 illustrates the architecture of a generic MTM with
isolated vMTM compartments. This architecture requires a
slightly modified TPM. Mainly, we add a trusted component,
the vMTM Instance Manager, which is responsible to separate
vMTM instances from each other. This includes adminis-
tration, isolated execution, memory management and access
control for each stakeholder compartment. Thus, a vMTM
instance is able to hold an autonomous and hardware-protected
key hierarchy to store its secrets and protect the execution
of security-critical data (e.g. signature and encryption algo-
rithms).

C. Setup and Take-Ownership of a Trusted Subsystem

The take-ownership operation establishes the trust rela-
tionship between a stakeholder and trusted mobile platform.
Currently, the MPWG Reference Architecture does not define
how a remote owner is to perform this initial setup and take-
ownership of its T SSσ . Hence we propose a method in this
section. The main idea behind our procedure is to install and
instantiate a ’blank’ trusted subsystem T SS∗σ containing a
pristine engine T E∗RO with a set of generic trusted services
T S∗σ . This subsystem is then certified by a remote owner,
if the platform is able to provide evidence of its pristine
configuration and policy conformance with respect to RO.
Figure 5 illustrates this process, which we now descirbe.

Platform and Protocol Precondition. In a preliminary
stage, the trusted mobile platform has carried out the boot
process and has loaded the trusted computing base and the
engine T EDM with its trusted services. The trusted platform
has checked that the installed hardware and running software
are in a trustworthy state and configuration. It is able to report
and attest this state, if challenged by an authorised entity.

Remote Stakeholder Take-Ownership Protocol. In the
first phase, the trusted engine T EDM carries out a take-
ownership preparation for the remote stakeholder. A ’blank’
engine T E∗RO is installed and booted by the RTEDM, and

Fig. 5. Remote Stakeholder Take-Ownership Protocol

a clean vMTMRO instance is activated inside the dedicated
MTM . An initial setup prepares the pristine engine T E∗RO. A
endorsement key-pair EK∗

RO is generated within vMTMRO
with a corresponding certificate CertT SSRO

1.

Next, T E∗RO performs an attestation of its current state. The
attestation can be done by the local verifier RTVDM inside
the T SSDM using RIM certificates of the remote stakeholder
RO. If no suitable RIM and corresponding RIM -certificate
are available for an pristine engine, alternatively a remote
attestation with an associated Privacy CA is also possible.

T E∗RO creates a symmetric key KRO,temp and encrypts
the public portion of the endorsement key EK∗

RO, the cor-
responding certificate CertT SSRO , attestation and purpose
information. Next, T E∗RO encrypts KRO,temp with a public
key KRO,PK and sends both messages to the remote owner.
After reception by the remote stakeholder, the messages are
decrypted using the private portion of key KRO,PK . We
assume that this key is either available through a protected
communication channel or pre-installed by the device manu-
facturer.

In a next step, RO verifies the attestation data and checks
the intended purpose of T E∗RO. If the engine and device attes-
tation data is valid and the intended purpose is acceptable, the
RO generates an individual security policy SPRO. The RO
signs the CertT SSRO and creates RIM certificates for local
verification of a ’complete’ T SSσ . Furthermore, RO creates a
Setup Configuration SCT SSRO , which enforces the engine to
individualise its services and complete its configuration with
respect to the intended purpose and given security policy. In
this step, RO encrypts the messages with the public portion of
the KRO,EK and transfers this package to the engine T ERO.

Finally, the trusted engine T E∗RO decrypts the received
package and installs it inside the TSSRO and thus completes
its instantiation.

1Typically, the key generation needs a so-called Owner Authentication.
Because this is problematic in a remote-owner scenario, authentication of
command execution may be enforced by challenge-response mechanisms
between RO and T SSRO .



D. Migration of a Trusted-Subsystem

If a stakeholder wants to move a source T SSσ,S to another
MTM-enabled platform, for instance to port user credentials
from device to device, all security-critical information includ-
ing the Storage Root Key (SRK) has to be migrated to the
target T SSσ,D. In our scenario, we assume the same remote
owner (e.g. mobile network operator) on both subsystems
T SSRO,S and T SSRO,D.

Fig. 6. Trusted Subsystem Migration Protocol

To be able to securely migrate the SRK, we suggest a
modification of the current MPWG specification to allow inter-
stakeholder-migration of a complete isolated key hierarchy.
Thus, an isolated key hierarchy is (1) migratable between
environments of identical stakeholders, (2) if and only if an en-
titling security policy on both platforms exists. The advantage
of migration between identical stakeholder subsystems is that
the migration process doesn’t require a trusted third party. We
only involve the owner in combination with local verification
mechanisms of the T SSRO to migrate the trusted subsystem
(including the SRK) to another platform. This enables for
instance direct, device-to-device porting of credentials, e.g. us-
ing short-range communication. We here propose a complete,
multilateral and secure migration protocol, which is illustrated
in Figure 6.

Platform and Protocol Precondition. Similar to section II-
C, the trusted mobile platform has carried out the same initial
steps as mentioned above. Furthermore, the remote owner has
performed an remote take-ownership procedure as described
in II-C.

Trusted Subsystem Migration Protocol. At the beginning
of the migration protocol, the device owner DOS of the
source platform T PS initialises the migration procedure and
requests an appropriate migration service of T SSRO,S . Next,
the trusted platform T PS is instructed by T SSRO to establish
a secure channel to the target platform T PD. After the
connection is available, T SSRO,S activates the corresponding
migration service of T SSRO,D to perform the import pro-
cedure. Thereupon, the target subsystem T SSσ,D performs
a local verification of T SSRO,S . If revoked, it replies with
an error message and halts the protocol. Otherwise T ERO,D

requests an confirmation from the local owner DOD.

Next, the target subsystem T SSRO,D generates a nonce
NRO,D. In order to provide evidence of its trustworthiness,
T SSRO,D sends all necessary information to the source
subsystem T SSRO,S . This includes the current state SRO,D,
a certificate of T SSRO,D, security policy SPRO,D and the
nonce NRO,D. Having received the target subsystem’s mes-
sage, T SSRO,S verifies the state of T SSRO,D. If the target
system is in a trustworthy state and holds an acceptable
security policy and system configuration, the current state of
T SSRO,S is locked to nonce NRO,D.

The T SSRO,S generates a symmetric migration key KM ,
serialises its instance and encrypts it with the migration key,
which is bound to an acceptable configuration of T SSRO,D.
Next, the key-blob and the encrypted instance are sent to the
destination T SSRO,D. In particular, this includes the whole
isolated key-hierarchy KRO,S with SRKRO,S , the security
policy SPRO,S , and the required subsystem configuration
SCRO,S .

Finally, the target subsystem T SSRO,D decrypts the re-
ceived blob and uses SRKRO,S as its own SRK. The
subsystem verifies the obtained security policy SPRO,S and
the subsystem configuration SCRO,S . With this information,
T SSRO,D rebuilds the internal structure of the source.

The source system should then be notified of the success of
migration and ultimately delete the migrated key hierarchy (or
even do it before sending the migration package as indicated
for simplicity in Figure 6). Otherwise one obtains replicated
trusted subsystems, by themselves indistinguishable to the
remote owner. But this may depend on the policies to be
enforced in the particular use case.

III. DESIGN OF MOBILE TRUSTED MODULES ON
TRUSTWORTHY OPERATING PLATFORMS

A prototypical implementation of the trusted engines and
the specified trusted services was realised as an extension to
the existing EMSCB / Turaya Computing Platform. Turaya is
an implementation of the EMSCB security architecture. It pro-
vides fundamental security mechanisms and a protected and
isolated execution environment, which meet the requirements
of the MPWG Reference Architecture [8], [11], [12].

Figure 7 illustrates our model, in which a hypervi-
sor/microkernel executes a legacy operating system in coexis-
tence with a running instance of the EMSCB-based security
architecture. The latter controls a virtual machine with several
trusted engines and services compliant to the MPWG require-
ments [1], [4]. In the following paragraphs, we outline the
significant platform layers concerning our approach.

The Hardware Layer of our model includes a generic
MTM as described in Section II-B, in addition to conventional
hardware components. This MTM acts as a dedicated master
trust anchor for the complete trusted mobile platform.

The Virtualisation Layer provides generic hardware ab-
straction, between the physical hardware of a trusted mobile
platform and the Trusted Software Layer below. The EMSCB
project supports microkernels of the L4-family [14] such as
hypervisors [15]. In general, all solutions provide mechanisms



Fig. 7. Trustworthy Operating Platform with multiple Trusted Engines

for resource management, inter-process-communication (IPC),
virtual machines, memory management and scheduling. In
our specific case, the virtualisation layer includes also a
fully functional device driver for a dedicated generic MTM.
Furthermore, it is responsible for instantiation of both the
trusted software layer and the legacy operating system.

The Trusted Software Layer provides security functional-
ity and is responsible for isolation of embedded applications
and software compartments. It also implements the vMTM
Proxy Service as described in Section II-B. Currently, EM-
SCB/Turaya provide an excellent foundation by its security
services (trust manager, compartment manager, storage man-
ager), which are required by the RTR and RTV, Protected
Storage and Trusted Engines Management Agent of T EDM .
Therefore, it is reasonable to build the significant parts of the
device manufacturer engine T EDM within this layer.

Trusted engines T Eσ within the Application Layer are im-
plemented as parallel and isolated L4Linux compartments [13]
on behalf of different stakeholders. Each compartment has
access to its vMTM instance through an embedded client-
side device driver. This driver constrains the functionality with
respect to its specific use case (MRTLM or MLTM). Further-
more, T Eσ has an RTEσ , which is responsible for building
all required allocated trusted resources and services depending
of its specific system configuration SCσ and security policy
SPσ .

IV. CONCLUSION AND FURTHER WORK

We have introduced the Trusted Engines and MTMs in terms
of our objective. In this context, we have exposed significant
parts of the MPWG Reference Architecture and how it can be
implemented on a (very slightly modified) TPM trust-anchor.
We have shown how to deploy trusted virtualised compart-
ments on devices and exhibited basic operations required in
the mobile domain, such as migration.

Using a vMTM in lieu of a Subscriber Identity Module
(SIM) as a trusted and protected software allows expansion to a
much wider field of authentication and identification manage-
ment systems even on standard PC platforms [16]. Supporting
online transactions by authentication via credentials held in
a vMTM may be one attractive use case. However, there
are some privacy and security challenges associated with this
implementation on a desktop computer, which require further
research. Finally, replacing SIMs/USIMs by multi-purpose
vSIMs may be attractive even for genuine mobile devices.

REFERENCES

[1] TCG. TCG MPWG Mobile Trusted Module specification,
version 1.0, Revision 1, 12 June 2007. https://www.
trustedcomputinggroup.org/specs/mobilephone/
tcg-mobile-trusted-module-1.0.pdf

[2] TCG. TCG specification architecture overview, specification revision
1.2, 2004.

[3] TCG. Trusted Platform Module specification (TPM), version 1.2,
revision 94, 2005. https://www.trustedcomputinggroup.
org/specs/TPM

[4] Trusted Computing Group, TCG Mobile Reference Architecture.
Specification version 1.0, Revision 1. 12 June 2007. https://
www.trustedcomputinggroup.org/specs/mobilephone/
tcg-mobile-reference-architecture-1.0.pdf

[5] Nicolai Kuntze and Andreas U. Schmidt. Transitive trust in mobile
scenarios. In Günter Müller, editor, Proceedings of the International
Conference on Emerging Trends in Information and Communication
Security (ETRICS 2006), volume 3995 of Lecture Notes in Computer
Science (LNCS), pages 73–85. Springer-Verlag, 2006.

[6] Kuntze, N., Schmidt, A.U.: Trusted computing in mobile action. In Ven-
ter, H.S., Eloff, J.H.P., Labuschagne, L., Eloff, M.M., eds.: Proceedings
of the Information Security South Africa (ISSA) Conference (2006)

[7] Nicolai Kuntze and Andreas U. Schmidt. Trusted ticket systems and
applications. In To appear in: New Approaches for Security, Privacy, and
Trust in Complex Systems. Proceedings of the IFIP sec2007. Sandton,
South Africa 14-16 May 2007. Springer-Verlag, 2007.

[8] EMSCB. European multilaterally secure computing base - towards
trustworthy systems with open standards and trusted computing. 2006.
http://www.emscb.com/

[9] Stefan Berger, Ramon Caceres, Kenneth A. Goldman, Ronald Perez,
Reiner Sailer, and Leendert van Doorn. vTPM: Virtualizing the trusted
platform module.

[10] Mario Strasser. Linux TPM emulator, 2005.
[11] Ahmad-Reza Sadeghi, Christian Stüble, and Norbert Pohlmann. Euro-

pean multilateral secure computing base - open trusted computing for
you and me. Datenschutz und Datensicherheit (DuD), pages 548–554,
2004.

[12] PERSEUS. The perseus security framework. http://www.perseus-os.org.
Applied Data Security Group, Ruhr-University Bochum.

[13] Michael Hohmuth. Linux-Emulation auf einem Mikrokern. PhD thesis,
TU Dresden, Fakultät Informatik, Lehrstuhl Betriebssysteme, 1996.

[14] R. Baumgartl, M. Borriss, Cl.-J. Hamann, M. Hohmuth, L. Reuther,
S. Schönberg, and J. Wolter. Dresden realtime operating system (drops).
In Workshop of System-Designed Automation, (SDA’98), 1998.

[15] P. Barham. Xen and the art of virtualization, 2003.
[16] Jane Dashevsky, Edward C. Epp, Jose Puthenkulam, and Mrudula

Yelamanchi. SIM trust parameters. Intel Developer Update Magazine,
2003.

https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-trusted-module-1.0.pdf
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-trusted-module-1.0.pdf
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-trusted-module-1.0.pdf
https://www.trustedcomputinggroup.org/specs/TPM
https://www.trustedcomputinggroup.org/specs/TPM
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-reference-architecture-1.0.pdf
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-reference-architecture-1.0.pdf
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-reference-architecture-1.0.pdf
http://www.emscb.com/

	Introduction
	TCG MPWG Reference Architecture
	Architectural Overview
	Trusted Engines
	Trusted Resources
	Services of a Trusted Engine

	Mobile Trusted Module
	Setup and Take-Ownership of a Trusted Subsystem
	Migration of a Trusted-Subsystem

	Design of Mobile Trusted Modules on Trustworthy Operating Platforms
	Conclusion and Further Work
	References

