
Installation of TOMOYO, IMA, the TPM

emulator and TrouSerS on Android

Stephan Heuser

stephan.heuser@sit.fraunhofer.de

May 19, 2010

This document describes how to build and start an Android Image which uses
TOMOYO (Mandatory Access Control) [3], IBM IMA (Integrity Measurement)
[1, 6], the TPM emulator [2, 7] and TrouSerS (TCG Software Stack) [5]. This
guide is based on the TOMOYO Installation manual [4].

1 Requirements

• x86-Linux based System

• Sun Java 5 JDK, JRE

For Ubuntu: Java 5 was removed from recent Ubuntu Versions. Either
install it manually or use the older Packages from Dapper/Jaunty. Add:

deb http://de.archive.ubuntu.com/ubuntu/ dapper main

deb http://de.archive.ubuntu.com/ubuntu/ jaunty multiverse

deb http://de.archive.ubuntu.com/ubuntu/ jaunty-updates \

multiverse

to /etc/apt/sources.list. Update the package index and install Java 5:

apt-get update

apt-get install sun-java5-bin sun-java5-jre sun-java5-jdk

• Android repo Script (http://source.android.com/download)

• droid-wrapper (http://github.com/tmurakam/droid-wrapper)

1

2 Building and Running

2.1 Kernel

In order to build a complete Android OS image you �rst need to build the Linux
kernel for the emulator.

2.1.1 Download the Android sourcecode and build environment.

To build the kernel a toolchain is needed. A complete, prebuilt toolchain is
available from Google. The entire procedure to download and build the SDK,
which contains the prebuilt toolchain, is described at http://source.android.
com/download. Do not build anything yet, we just need the toolchain for
now. I will refer to the directory the Android sourcecode was extracted to
as ANDROID_SOURCE from now on.

2.1.2 Download, Patch and Compile the Android gold�sh kernel

The gold�sh kernel is the Linux kernel used for the Android emulator.

1. The kernel sourcecode is available at http://android.git.kernel.org/
?p=kernel/common.git;a=summary. Download the current 2.6.29 snap-
shot (android-goldfish-2.6.29) from the repository.

2. Extract the kernel:

tar -xzf common-refs_heads_android-goldfish-2.6.29 \

.tar.gz

3. Move to the extracted kernel directory and remove world writable permis-
sions from the source code:

cd common (i will refer to this directory as GOLDFISH from now on)

find -print0 | xargs -0 chmod go-w --

4. Download and extract the TOMOYO patchset. Do not apply any of the
patches yet!

wget http://osdn.dl.sourceforge.jp/tomoyo/30297/ \

ccs-patch-1.6.8-20090528.tar.gz

tar -zxf ccs-patch-1.6.8-20090528.tar.gz

2

5. Build the Kernel using the previously downloaded Android build environ-
ment.

ARCH=arm CROSS_COMPILE=ANDROID_SOURCE/prebuilt/ \

linux-x86/toolchain/arm-eabi-4.2.1/bin/arm-eabi- \

make goldfish_defconfig

ARCH=arm CROSS_COMPILE=ANDROID_SOURCE/prebuilt/ \

linux-x86/toolchain/arm-eabi-4.2.1/bin/arm-eabi- \

make -s -jN

You can specify the number of threads to use by setting the parame-
ter -jN. N is the number of threads (e.g. on a dual core system one might
use -j2).

6. Apply the kernel patches available at http://www.vogue-project.de/

cms/front_content.php?idcat=10. Patches may fail since the Gold�sh
sourcecode changes over time. In case of failing patches either use quilt for
automated patch managment or analyste the rejected patches and apply
the changes yourself. The patchset consists of �ve patches.

patch -p1 < 001_ccs-patch-2.6.29.patch (TOMOYO for Android)

patch -p1 < 002_ibm_ima_2.6.29.1.patch (IBM IMA)

patch -p1 < 003_ima_patch (IBM IMA �xes for Android)

patch -p1 < 004_tpmd.patch (TPM emulator device)

patch -p1 < 005_config.patch (Kernel con�guration �les)

You can test the patches using the --dry-run parameter before applying
them.

7. Build the kernel again.

ARCH=arm CROSS_COMPILE=ANDROID_SOURCE/prebuilt/ \

linux-x86/toolchain/arm-eabi-4.2.1/bin/arm-eabi- \

make -s -jN

(where N is the number of threads to use)

3

2.1.3 Cross-compiling the GMP library for Android

This guide is mainly based on the droid-wrapper (http://github.com/tmurakam/
droid-wrapper) to cross-compile the GMP library (http://gmplib.org) for
Android.

1. Build the Android source code

Follow the instructions at http://source.android.com/download to build
the Android source code.

2. Install ruby

Install ruby if it is not already installed. It is required by the droid-
wrapper, On Ubuntu/Debian-based Systems:

sudo apt-get install ruby

3. Download and install droid-wrapper

(a) Download the droid-wrapper script from http://github.com/tmurakam/

droid-wrapper.

(b) Extract the droid-wrapper

(c) Move to the extracted droid-wrapper source directory

sudo make install

This will install droid-gcc, droid-g++, and droid-ld under
/usr/local/bin. There might be following two errors, which can be
ignored:

/bin/rm: cannot remove `/usr/local/bin/droid-ld': No such

file or directory

/bin/rm: cannot remove `/usr/local/bin/droid-g++': No such

file or directory

4. Set environment variables for droid-wrapper

Specify following environment variables before using the droid-wrapper:

export DROID_ROOT=path/to/ANDROID_SOURCE

Make sure that you set the ANDROID_SOURCE path correctly.

4

export DROID_TARGET="generic"

5. Download and cross-compile the GMP library

The GNUMultiple Precision Arithmetic Library source code is available at
http://gmplib.org. Download the version 4.3.2 (gmp-4.3.2.tar.bz2).

6. Extract the gmp-4.3.2.tar.bz2 library

tar �xjvf gmp-4.3.2.tar.bz2

7. Move to the extracted directory

mkdir INSTALL

CC=droid-gcc LD=droid-ld ./configure �prefix=path/to/INSTALL \

�build=i686-pc-linux-gnu �host=arm-linux-gnueabi

Make sure that you set the �pre�x option (path to the INSTALL directory)
correctly.

make

make install

The generated static and shared library can be found under INSTALL/lib.
The header �le (gmp.h) can be found under INSTALL/include.

2.1.4 Patch and compile Android

The TPM emulator, TPM tools and TrouSerS have to be added to the Android
source before building it.

1. Change to the Android directory. Perform cleanup of the build directory.

cd ANDROID_SOURCE

make clean

2. Download mydroid.patch from http://www.vogue-project.de/cms/front_

content.php?idcat=10

3. Apply the patch.

patch -p1 < mydroid.patch

5

4. Copy the previously built libgmp.a to
ANDROID_SOURCE/frameworks/base/libs/libgmp

5. Build Android.

make -jN (where N is the number of threads to use).

2.1.5 Preparing the Image, adding ccs-tools

The TOMOYO ccs-tools have to be added to the previously built Android image.

1. ANDROID_SOURCE/out/target/product/generic contains the Android im-
age �les. Copy the �les system.img, ramdisk.img and userdata.img to
a new directory, which i will refer to from now on as ANDROID_IMAGE.
Copy the new kernel image (GOLDFISH/arch/arm/boot/zImage), to this
directory and rename it to kernel.img

2. Create an sdcard image inside the directory:

mksdcard -l Mysdcard 1024M sdcard.img

Replace 1024M with the desired size.

3. Add the precompiled ccs-tools to the ramdisk.

mkdir initramfs

cd initramfs

zcat ../ramdisk.img | cpio -id

cd sbin

wget http://tomoyo-android.googlecode.com/files/ \

ccstools-embedded_bin.tgz

tar -xzf ccstools-embedded_bin.tgz

rm ccstools-embedded_bin.tgz

cd ..

find . -print0 | cpio -o0 -H newc | gzip -9 > \

../ramdisk.img

6

2.1.6 Building ccs-tools on the host system

Download source code from TOMOYO project from SourceForge.jp, extract it
and compile it:

wget http://sourceforge.jp/frs/redir.php?f=/tomoyo/30298/ \

ccs-tools-1.6.8-20100115.tar.gz

tar -zxf ccs-tools-1.6.8-20100115.tar.gz

cd ccstools

make

make install

2.1.7 Preparing and starting the emulator

1. Set the environment variables needed to start the emulator.

export EMULATORDIR=ANDROID_SOURCE/out/host/linux-x86/bin

export SYSTEM=ANDROID_IMAGE

2. Start the emulator.

emulator -kernel $SYSTEM/kernel.img \

-system $SYSTEM \

-ramdisk $SYSTEM/ramdisk.img \

-data $SYSTEM/userdata.img \

-sdcard $SYSTEM/sdcard.img

3. Forward Port 7000 to to be able to control TOMOYO externally:

adb forward tcp:7000 tcp:7000

4. Open a shell:

adb shell

5. Create the directory /data/usr/lib for tcsd:

mkdir /data/usr

mkdir /data/usr/lib

6. Start the TOMOYO Policy Editing Agent if it is not already running:

ccs-editpolicy-agent 0.0.0.0:7000 &

7

7. Start tpmd if it is not already running. The TPM daemon should start
during initialization. It fails to start if the socket /data/tpmd_socket:0
already exists. If this is the case remove the socket �le and start tpmd
manually. This happens anytime the emulator is killed.

rm /data/tpmd_socket:0

tpmd

The parameters -d -f can be used to retrieve additional debug infor-
mation and to force tpmd to run in foreground.

8. Start tcsd:

tcsd

The parameter -f may be used to force tcsd to stay in foreground.

9. Initialize the TOMOYO Linux policy:

init_policy_android.sh

10. You should be able to edit TOMOYO policies now from the host system.
On the host system:

ccs-editpolicy 127.0.0.1:7000

11. Mount securityfs if it is not already mounted:

mount -t securityfs securityfs /sys/kernel/security

12. Verify that IMA works correctly.

/sys/kernel/security/ima/ascii_runtime_measurements should con-
tain the hash values of apk �les and executables if IMA works correctly.

8

References

[1] Integrity Measurement Architecture (IMA). http://sourceforge.net/

projects/linux-ima/.

[2] Software-based TPM Emulator. http://tpm-emulator.berlios.de/.

[3] Tomoyo Linux. http://tomoyo.sourceforge.jp/.

[4] Tomoyo on Android. http://code.google.com/p/tomoyo-android/wiki/
HowToApplyTomoyoOnAndroidARM.

[5] TrouSerS. http://trousers.sourceforge.net/.

[6] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementa-
tion of a TCG-based integrity measurement architecture. In Proceedings of

the 13th USENIX Security Symposium, San Diego, CA, USA August 9-13,

2004, pages 223�238, Berkeley, CA, USA, 2004. USENIX Association.

[7] M. Strasser and H. Stamer. A Software-Based Trusted Platform Module
Emulator. In Trusted Computing - Challenges and Applications. First Inter-

national Conference on Trusted Computing and Trust in Information Tech-

nologies, TRUST 2008 Villach, Austria, March 11-12, 2008, volume 4968 of
LNCS, pages 33�47, Berlin, Germany, 2008. Springer.

9

