
Software Security Aspects of Java-Based Mobile Phones ∗

Karsten Sohr
Center for Computing

Technologies (TZI)
Universität Bremen

Bibliothekstr. 1
28359 Bremen, Germany

sohr@tzi.de

Tanveer Mustafa
Center for Computing

Technologies (TZI)
Universität Bremen

Bibliothekstr. 1
28359 Bremen, Germany

tanveer@tzi.de

Adrian Nowak
Otaris Interactive Services

GmbH
Fahrenheitstr. 1

28359 Bremen, Germany
nowak@otaris.de

ABSTRACT
More and more functionality is provided by mobile phones
today; this trend will continue over the next years. However,
with the increasing functionality new risks go along. This
not only applies to security-critical mobile applications such
as m-banking or m-commerce applications. The end user’s
privacy may also be in danger or the operator may be the
target of an attack. In this paper, we discuss security risks
introduced by mobile phones considering the perspectives
of the different parties involved in telecommunications sys-
tems. Specifically, we demonstrate those risks by means of a
security hole discovered in a large number of mobile phones.
The security hole can be exploited to obtain manufacturer
or even operator permissions. In particular, we implemented
a Java-based Trojan horse. This way, the compromised mo-
bile phone can be used as an eavesdropping device by an
attacker. All in all, this demonstrates that the risks are not
only theoretical, but also real. We also sketch a methodology
for the security analysis of mobile phone software.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive Software

General Terms
Security

Keywords
Mobile Phone, Java Security, Static Security Analysis

1. INTRODUCTION
More and more functionality is incorporated into mobile

phones. Current mobile phones not only provide the possi-
bility to initiate and accept phone calls. SMS, MMS, and

∗This work was supported by the German Federal Min-
istry of Education and Research (BMBF) under the grant
01IS09032 (VOGUE project).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$5.00.

now even e-mails can be sent or received. In particular, new
applications such as Java MIDlets [13], small Java programs
for mobile phones, can be downloaded or installed via In-
frared or Bluetooth. Furthermore, a broad number of Java
Specification Requests (JSRs) are made available for mobile
phones, again introducing new functionality which can be
conveniently used, such as the Multimedia API [11]. Given
the fact that most of the people in developed countries pos-
sess a mobile phone and use those phones either for private
or for business purposes, security- and privacy-relevant data
are stored on mobile phones such as lists with addresses of
customers, tasks lists and lists of phone numbers.

As a consequence, one might assume that security and
privacy seem to be at least important as in the PC world. Up
to now, however, end users do not seem to be prepared for
attacks on mobile phones, although some reports on hacking
mobile phones already exist, e.g., [19, 25, 30]. In the future,
it can be expected that the rate of security incidents will rise
because of the increasing attractiveness of the attack target
“mobile phone” [10].

In this paper, we show by means of a concrete security hole
occurring in a large number of current mobile phones from
Sony Ericsson which security risks can arise in the context
of mobile applications. The security hole can be exploited
by using simple Java API calls, and we have implemented
a Trojan horse based upon the security hole. We also show
that the end user can act as an attacker obtaining access
rights originally not intended for him. For example, a user
might circumvent digital rights management (DRM) mech-
anisms or obtain operator permissions. In the end, the secu-
rity hole can be seen as a case study demonstrating security
risks related to mobile phone platforms. This specifically
applies to high-end mobile phone platforms such as Black-
Berry and Android, which provide their own rich Java-based
middleware.

We also briefly discuss a methodology for a static security
analysis of the source code which Sony Ericsson could have
employed for improving the security mechanisms of the Java
Virtual Machine (JVM). The proposed analysis technique is
based upon the Java Modeling Language (JML) [2], a specifi-
cation language for Java, and employs related static analysis
tools such as ESC/Java2 [2] as well as a reverse engineering
tool-suite called Bauhaus [23]. The Bauhaus tool allows one
to carry out an analysis on the software architecture, i.e.,
at a higher abstraction level. Thereafter, a more focused
security analysis at the source-code level can be performed
with the help of JML tools.

The rest of the paper is structured as follows. In Section 2,

we provide an overview of related concepts and technologies
such as Java security mechanisms for mobile phones. Sec-
tion 3 gives more details on the security hole discovered in
mobile phones, discusses several attack vectors and specif-
ically describes our Trojan horse. In Section 4, we discuss
the consequences of the security hole for all parties involved,
whereas we sketch solutions for avoiding such problems in
Section 5. We outline our conclusions in Section 6.

2. BACKGROUND
In the following, we first give a short overview of Java

for mobile devices (often called “Mobile Java”) including the
Java 2 Micro Edition (J2ME). As indicated above, we later
employ Mobile Java as the main vehicle for exploiting the
aforementioned security hole, and in particular, the addi-
tional functionality made available by the Java APIs can be
conveniently used by the Trojan horse to exploit the security
hole. To give a flavor of the functionality that can be used by
an attacker, we describe the various security-relevant Java
APIs for the J2ME in more detail. We also explain the basic
security concepts of the J2ME, and at the end of this sec-
tion, we sketch DRM mechanisms for mobile phones because
these mechanisms can also be circumvented by means of the
security hole.

2.1 Java for mobile phones
The J2ME introduced by Sun Microsystems in 1999 was

meant for devices with low computational power and mem-
ory. In particular, this applies to PDAs and mobile phones,
but also to other embedded systems such as VoIP phones
or sensors. The central part of the J2ME is a configuration.
For mobile phones, the Connected Limited Device Configu-
ration (CLDC) [26] is used. The CLDC defines a lean JVM
called “Kilo Virtual Machine”. Based upon the CLDC, the
Mobile Information Device Profile in version 2.1 (MIDP)
has been specified and then been implemented or licensed
by most of the manufacturers of mobile phones. The MIDP
makes available certain APIs for developing Java MIDlets.
For example, functionality for networking, access to serial
ports, application auto invocation1, and graphical user in-
terfaces are provided. In addition to the MIDP, various JSRs
are often implemented such as the Java Wireless Messaging
API (supports sending and receiving of SMS); the Bluetooth
API (for creating Bluetooth applications); the Personal In-
formation Management API (for handling contact, calendar,
and task lists); the FileConnection API (for accessing cer-
tain folders, subfolders, and files of the mobile phones); the
Multimedia API (for access to audio and video capabilities
of the mobile phone such as the built-in camera). In newer
models, the Security and Trust Services API (SATSA) is
implemented, which among other functionality lets MIDlets
communicate with Subscriber Identity Module (SIM) cards
by means of the Application Data Unit Protocol (APDU).
For example, the exchangeAPDU() method of the class AP-

DUConnection can be used to access smart card applications.
Moreover, Sony Ericsson makes available additional APIs.
One of them includes functionality to retrieve the current
cell ID, and gives the local area code of the mobile user. This
way, the current position of the user can be determined.

1With the help of this so-called PushRegistry, Java MIDlets
can also be started remotely. Then, the activation of MI-
Dlets can, for example, be triggered by an SMS sent to the
mobile phone in question.

2.2 Security mechanisms for Mobile Java
Java for mobile devices provides various security-critical

APIs. For this reason, a sandbox model similar to that of the
Java 2 Standard Edition (J2SE) has been introduced [17].
In particular, a byte code verification mechanism serves as a
low-level security mechanism guaranteeing certain language
properties such as type safety, however, with a lower mem-
ory footprint and power consumption than its J2SE coun-
terpart. The other important security concept of the J2ME
are protection domains, once again similarly to the J2SE
security model. A protection domain encompasses permis-
sions on security-relevant Java APIs such as those mentioned
in Section 2.1. Java MIDlets can now obtain access rights
through the protection domains. In particular, one can con-
figure a protection domain in a way that applications on mo-
bile phones run in a sandbox with restricted access rights.
Four domains are predefined according to the MIDP spec-
ification [13], namely, Unidentified Third Party Protection
Domain, Identified Third Party Protection Domain, Opera-
tor Domain, and Manufacturer Domain. Java MIDlets are
assigned to protection domains according to the X.509 code
signing certificates used for signing the MIDlets.

The first two domains differ by the identification of the
Third Party which created the application and different de-
fault and other user settings. The MIDlets from the Identi-
fied Third Party Protection Domain have been signed by a
certificate from a trusted certification authority (CA) whereas
the MIDlets of the Unidentified Third Party Protection Do-
main have been signed by an unknown CA or have not been
signed at all. In both cases, however, the user shall be
prompted (at least once) when a security-critical operation
is performed such as sending an SMS.

The other two domains can be defined depending on the
specific manufacturer and operator, respectively. Strictly
speaking, the MIDlets in those domains should also ask for
permissions on accessing sensitive APIs. This is, however,
not mandatory.

2.3 Mobile digital rights management
Ring tones, music files, games, and Java applications are

copy-protected in mobile phones by means of DRM mecha-
nisms. There exist two different DRM mechanisms for Sony
Ericsson mobile phones, one for the protection of Java appli-
cations and games, which is proprietary. The other is meant
to protect ring tones and music files and is based upon the
specifications of the Open Mobile Alliance (OMA) [20]. In
both cases, the object to be protected is encrypted, e.g., in
case of OMA DRM by means of AES keys. If an attacker
has access to the decrypted versions of the objects under
protection, then the DRM mechanism can be circumvented.
For instance, this is the case when an attacker gets access to
unencrypted files stored in the hidden storage of the mobile
phone or when the AES keys can be accessed.

3. EXPLOITING THE SECURITY HOLE
In this section, we first explain the security hole and then

describe several attack scenarios. Thereafter, we present a
Trojan horse that has been developed to demonstrate the
consequences of the security hole. We also sketch how a
worm can be built by exploiting the vulnerability.

3.1 Accessing arbitrary internal files
Usually, Java MIDlets may only access the external mem-

ory of the mobile phones; the internal file system cannot
be accessed by means of the methods of the FileConnection
API (sandbox model). There is, however, a link concept
incorporated into Sony Ericsson’s mobile phones on the OS
level. This means that files can be accessed by symbolic
links similar to the Unix link concept [7]. The access rights
of the files the links point to are not checked by the OS.
This way, the well-known security principle “complete medi-
ation” is violated. As a consequence, read and write access
to arbitrary internal files (including system files) is possi-
ble if one can create link files pointing to internal files. In
fact, the FileConnection API allows an attacker to create
link files although this should have been prohibited. That
means there is a second security hole—this time, in Sony
Ericsson’s version of Mobile Java. In the following, we dis-
cuss this Mobile Java hole in more detail. First, observe that
link files on Sony Ericsson’s operating system use the spe-
cial character ’@’ as the file name suffix. Directly creating
such link files is not possible yet, i.e., Sony Ericsson’s JVM
throws an exception in this case. However, there is an indi-
rect way to achieve the aforementioned goal: The rename()

method of the FileConnection API accepts file names with
that special character. As a consequence, we can first create
a file containing the link and thereafter rename the file in
such a way that it is interpreted by the OS as a link file.

To sum up, we have carried out the following steps to
detect the aforementioned security hole(s):

1. Due to the fact that applications on Sony Ericsson
mobile phones are distributed via Java the J2ME was
selected as an attractive attack target.

2. Then operating system specifics have been analyzed.
In the case of Sony Ericsson mobile phones, the op-
erating system is Enea OSE RTOS [5] (and not Sym-
bian as it is the case with Nokia smart phones). Since
comparatively little documentation on this operating
system is publicly available, we analyzed the file sys-
tem structure, and found out that files with special
characters in their file names existed.

3. We took a closer look at those files and found out that
some of them contained file names. Interestingly, we
learnt that the mobile phone crashed occasionally on
changing those file names. From that, we concluded
that there was a kind of symbolic link concept.

4. Finally, we searched for a way of exploiting the link
concept by means of Mobile Java and detected that
the rename() method was not appropriately secured.

One consequence of the aforementioned security flaw is that
the user could access sensitive files. For example, pre-installed
certificates for m-banking, m-commerce or code-signing can
be overwritten. This will be discussed in the following.

3.2 Attack scenarios
In this section, we describe several attack vectors, includ-

ing the description of a concrete Trojan horse that we have
implemented to give a real-world demonstration of the con-
sequences. Given the fact that arbitrary system files are
accessible, other attacks are also conceivable.

Figure 1: Non-trustworthy certificates can be added

to the Manufacturer Domain.

Circumventing DRM mechanisms. In the first scenario,
the end user can be seen as the attacker in that he can break
the DRM mechanism provided by mobile phones (see Sec-
tion 2.3). In particular, the aforementioned security hole
lets the user make a copy of Java games and programs with
the help of a simple Java program. The Java games can
then be copied to other mobile phones, even from a different
manufacturer, due to the platform independence of Java. In
addition, AES keys for protecting other digital content such
as music files are available in the internal file system, which
can lead to break the DRM mechanism for such content. We
have not further investigated that point because our focus
lies more on attacking the end user. However, we later dis-
cuss the general consequences when the DRM mechanisms
are broken on mobile phones (see Section 4). Furthermore,
we do not claim that there are not other ways to circumvent
DRM on mobile phones. We only want to demonstrate that
the security hole can be exploited in different ways.

Obtaining manufacturer permissions. The second sce-
nario describes the possibilities from the perspective of an
attacker who tries to gain unauthorized access to security-
critical applications such as m-banking applications. As
mentioned initially, one can manipulate files on the mobile
phone through the aforementioned security hole. This also
applies to security certificates in the protected storage area
of the mobile phone, which are used to verify signed Java ap-
plications (see Section 2) or to confirm the trustworthiness
of secured web pages (e.g., financial institutes, e-commerce
shops). In Figure 1, we show a Verisign Class 3 certificate
that has been overwritten and then added to the Manu-
facturer Domain. Note that we must overwrite an already
existing certificate because we only have the right to read
and write files, but not to create new ones.

As mentioned in Section 2.2, Java applications on mo-
bile phones usually run in a sandbox with restricted access
rights. However, if an application is signed with a manu-
facturer certificate, the application can even obtain the full
functionality of the phone, without the need to ask the user.
As indicated above, the MIDP 2.1 specification recommends
that MIDlets in the protection domain of the manufacturer
should prompt for confirmation in case security-critical APIs
are called. Sony Ericsson seems to have implemented a less

Figure 2: A security warning asking for write access.

restrictive policy, which violates the principle of least privi-
lege. This also contributed to the exploitation of the security
hole by the Trojan horse described in the subsequent section.

The Trojan Horse. Exploiting the aforementioned security
hole, it is possible for the attacker to implement a Trojan
horse which can violate the privacy of the end user. This
Trojan horse is realized with the help of a simple, unsigned
Java application, which has been installed on the user’s mo-
bile phone. In principle, this unsigned Java application could
install a further Java MIDlet now signed by our (modified)
manufacturer certificate. But we decided to go another more
simple way: The Application Management System (AMS) of
the JVM has an internal table (represented as a file) which
contains the assignments between protection domains and
Java MIDlets. Then we only had to change the protection
domain entry of our Java MIDlet in this table. Note that we
can carry out this attack because we have access to arbitrary
files in the file system including that one containing the ta-
ble. This way, we have an unsigned Java MIDlet, which now
belongs to the Manufacturer Domain.

To hide the true functionality of the Trojan horse, we im-
plemented a slide-show showing some pets. The user must
now only confirm security warning “Allow application to
write user data?” (see Figure 2). This warning looks harm-
less because the end user might guess that user data are
stored. He can be confused by showing a simple message
right before the actual security warning appears as a social
engineering attack. For example, this message could state
that the application wants to store the pictures of the pets
and that this step must be confirmed by the user. The end
user should be familiar with such a kind of security warning
because often Java MIDlets from trustworthy vendors like
Google Maps Mobile are unsigned and request for permis-
sions with the help of similar security warnings.

With the confirmation of the warning, the Trojan horse
breaks out of the sandbox, gathers the manufacturer rights,
and uses all further services of the mobile phone, without any
consent of the user or manufacturer. The security warning
of the Java system looks harmless such that users will ignore
it—this way, we can speak of a user interface error, which

Figure 3: Controlling a mobile phone remotely.

also contributes to a successful social engineering attack.
Having prepared the attack, we implemented a hidden

functionality that reads the contact list and sends that list
per SMS to the attacker. Moreover, the Trojan horse has
a built-in eavesdropping functionality, i.e., the Trojan horse
can record discussions of an internal meeting (as audio and
video files) and then send that information back to the at-
tacker. In addition, the current cell ID of the user can be
recorded and then later be sent to the attacker. This way, a
tracking attack is possible. With the help of the auto invoca-
tion functionality (see Section 2.1), the Trojan horse can be
started remotely by an SMS. The attacker can then decide
when to eavesdrop on the victim. To sum up, the Trojan
horse eavesdrops on the user violating the user’s privacy and
obtains sensitive information. The user does not have any
suspicion for that privacy violation.

We also implemented a program for a mobile phone or
PC, which remotely controls mobile phones infected by our
Trojan horse (see Figure 3). The Trojan horse on the hacked
mobile phone then acts as a server, whereas the control pro-
gram is the client. The Trojan horse can be started by the
auto invocation functionality from the client software.

Beyond the spyware functionality, we also carried out other
attacks such as corrupting system files. This way, the mobile
phone was made unusable such that the firmware had to be
reinstalled. Moreover, we changed an entry in the aforemen-
tioned internal table of the AMS in a way that the Trojan
horse cannot be uninstalled by the end user. If the end user
wants to delete the Trojan horse, he again must flash the
firmware onto the phone.

Infection with the Trojan horse. There are several ways
mobile phones can be infected by the Trojan horse. One
such vehicle is Bluetooth [31]. For example, so-called Blue-
tooth hot spots are often installed on airports, fairs, or cin-
emas to place advertisements in the form of mobile content
such as Java MIDlets, sound or video files on the end users’
mobile phones. An attacker can install faked hot spots lur-
ing the victim into a trap; the user might assume that it is
information about a new movie, to give an example. Em-
ploying the Java Bluetooth API, the attacker can search for

Bluetooth-enabled mobile phones and send the Trojan horse
to those phones. Infecting mobile phones through Bluetooth
has been well-demonstrated [31], but there are other ways
of infection which do not demand the proximity of attacker
and victim. This will be discussed now.

One further possibility is spreading via the MMS function-
ality. There are examples of malicious code using that way
of infection [19, 25]. Interestingly, some operators such as
Vodafone and T-Mobile allow Java MIDlets to be installed
from an MMS. The Trojan horse might also be distributed
on the Web or sent via e-mail, and then be installed on
the mobile phone similarly to the PC world. At least, the
e-mail client implemented on the mobile phones we investi-
gated supports Java applications as attachments.

If an attacker is interested in attacking a specific person
or organization, then an infection by means of storage cards
is conceivable. Storage cards are used to exchange pictures,
music, and video files. Then the attacker can automatically
install the Trojan horse on the victim’s storage card.

Exploiting the Vulnerability to Build a Worm. Due to
the fact that the vulnerability allows an attacker to open
arbitrary network connections without further confirmation
(beyond that shown in Figure 2) the malware can propa-
gate per e-mail, i.e., the code can be sent through an SMTP
connection. In this case, the attacker can exploit a feature
that is offered by some operators, namely, that e-mail ad-
dresses are built from phone numbers. Then, the attacker
can read the phone list and try to send e-mails to the re-
spective e-mail addresses. As mentioned above, using mail
on mobile phones is becoming more and more convenient
and the latest models of mobile phones let a user easily in-
stall Java MIDlets. Due to the platform-independence of
Java the malware can run on various (vulnerable) models
and hence propagate. In the next step, it is also conceiv-
able that an attacker takes over thousands of mobile phones
and builds a “mobile” botnet. This way, a DDoS attack on
a mobile phone network can be carried out by flooding the
network with SMS and MMS messages [29].

4. DISCUSSION
The aforementioned security hole has several implications,

which will be discussed in the following sections.

Impact of the security bug. We analyzed a mobile phone
platform which has not been the main target of an attacker
before. The vulnerable phones employ the real-time oper-
ating system Enea OSE [5], and not the supposedly ubiqui-
tous Symbian OS. However, it is mostly unknown that Enea
OSE is also used in many models of other mobile phone
vendors such as Nokia and Samsung and even in base sta-
tion equipment. Specifically, the company Enea AB stated
in March 2008: “Enea OSE is a feature rich commercial
RTOS deployed by half of the world’s 3G mobile phones.
The software powers 350 million of the new mobiles deliv-
ered during last year, a number equivalent to 30 percent of
the 1,2 billion mobiles which were sold that year...” [6]. As
a consequence, security flaws in such a widely used mobile
phone OS might have a larger impact than expected. Specif-
ically, it is conceivable that the unmediated link also exists
in mobile phones of other vendors. However, the J2ME im-
plementations made available by these vendors, were not

vulnerable because they did not support the FileConnection
API at that time.

The Mobile Java vulnerability has been detected in vari-
ous Sony Ericsson mobile phone models such as K750i and
K 880i. It is expected that most of Sony Ericsson’s mobile
phones produced between 2005 and end of 2007 are affected
by this security hole, all in all more than 100 million devices.
As a reaction to our vulnerability report, the manufacturer
fixed (at least) the Java problem in the latest models not yet
shipped to customers at that time. This way, those models
are not affected by the security hole.

Different attackers. Another point is the fact that the se-
curity hole can be exploited by different attackers. We now
discuss the consequences from the point of view of the dif-
ferent attackers. As demonstrated above, the end user can
be attacked by Trojan horses. The aforementioned Trojan
horse gives only a small flavor what is possible. In principle,
also newer security-relevant Java APIs such as the SATSA
API (see Section 2.1) can be employed by the Trojan horse.
Specifically, those APIs are implemented in the latest gen-
eration of Sony Ericsson mobile phones. This way, security-
critical transactions can be manipulated. With the help of
the SATSA API, commands can be sent to applications of
SIM cards, and functions such as changePin() or enter-

Pin() can be called. However, we checked that the new
generation of mobile phones is not vulnerable. The manu-
facturer was able to fix the security hole before the release
of the latest phone models.

The user can also act as an attacker. As indicated above,
the DRM copy protection of Java games and programs can
be circumvented. Beyond copying Java applications for mo-
bile phones, it is conceivable that also the DRM copy pro-
tection for music files can be broken. This would be the case
if AES keys, used for the encryption of the music files, are
stored on the internal file systems.

Not only can DRM mechanisms be circumvented, but also
excessive operator permissions can be gained. This may
have an impact on billing for value-added services, provided
by the operator. For example, if an operator makes avail-
able specific Java Card [27] applications on a SIM card, an
attacker can install a MIDlet on the mobile phone and then
add that MIDlet to the Operator Domain. Thereafter, he
tries to access the Java Card application on the SIM card
by calling the method exchangeAPDU() (see Section 2.1).
If the Java Card application is responsible for billing ser-
vices, the attacker can committ fraud. In the specification
for the SATSA API several scenarios for using that API are
discussed [12]. For example, a user can download a Java
MIDlet from the operator making available various services.
Whenever the user accesses those services, a loyalty counter
on the SIM card is incremented by means of the correspond-
ing Java Card application. When the loyalty points of the
user reach a predefined level, the user earns free minutes. If
an attacker now gets access to that Java Card application,
he can abuse that loyalty application.

Another attack on an operator is a “debranding” (unlock-
ing) attack, say, a mobile phone formerly tied to Vodafone
can now be used in the O2 network. In fact, the link files are
used by operators to make their ring tones and logos read-
able from the external file system and at the same time to
protect those files from being overwritten. Technically, links
exist in the external file system which point to the ring-tones

and logos stored in the internal file system.

Problems of patching mobile phones. Some remarks are
to be made on possible reactions of the manufacturer, and
on the process of patching the phones. Certainly, the secu-
rity hole can be fixed in the firmware of the mobile phone,
implementing an appropriate access control mechanism or
at least fixing the Mobile Java vulnerability. However, since
the JVM is part of the firmware as discussed with the man-
ufacturer, the firmware and not only an application must be
patched in this case.

The manufacturer was able to fix the Mobile Java prob-
lem in the latest models which have not been delivered to
the customers at that time. However, patching all or most of
the already deployed mobile phones is hard because most of
the end-users will never notice that their phones are vulner-
able and do not take care of patching their phones. Further-
more, this would also mean that the process of installing the
firmware should become more comfortable than today. Re-
calling all vulnerable phones would also not be an adequate
solution for the manufacturer because this would be by far
too costly. Given the situation that the operator has often
remote access to their customers’ mobile phones, one solu-
tion would be that the operators install the new firmware
on their customers’ mobile phones (with the consent of the
end users). Even if there is an adequate patch distribution
mechanism for mobile phones (as for the iPhone), still the
question remains “Who does pay the costs for downloading
the patch?”— the end user might obviously not be willing
to do this. Moreover, in some countries legal issues would
prohibit a patch distribution solution via an operator.

Awareness aspects. The security hole demonstrates the
dangers of the connection of telephone and PC function-
ality. At this time, the risks of mobile phones are not com-
pletely understood by the end users. In order to assess the
full functionality of mobile phones, the end user should be
adequately trained or informed about the risks related to
mobile phones. Furthermore, the security warnings should
not be misleading as in the Sony Ericsson case. Other mobile
phone platforms, however, have similar problems. For exam-
ple, Android phones present the end user a list of permissions
for confirmation on installing an application. Strictly speak-
ing, for each listed permission, the end user should know the
consequences of granting the permission in question, specifi-
cally, if there are listed both relatively harmless permissions
such as activating the sleep mode and very sensitive permis-
sions such as unrestricted Internet access.2

In general, the aforementioned attacks demonstrate the
specific risks of mobile phones: Mobile phones can be used
to conveniently eavesdrop on the victim because we tend
to always take mobile phones with us and often have them
switched on. In contrast, PCs or even laptops are not so
ubiquitous and not switched on for such long periods of
time. Nevertheless, it should be stressed that we do not
claim to abandon the additional functionality and give up
all benefits of such new technologies. However, an appropri-
ate strategy to assess the risks of mobile phone platforms for
all the different stakeholders (such as end users, enterprises,

2This leads to another Social Engineering attack, request-
ing some harmless-looking self-defined permissions and hid-
ing this way a security-critical permission such as Internet
access.

operators) is necessary.

Software quality of mobile phones. Another question is
how such a kind of security hole can arise. On the one hand,
we have an internal mechanism, the link file concept, having
been introduced in early mobile phone generations. On the
other hand, new functionality is added such as the FileCon-
nection API. The combination of the (hidden and undocu-
mented) link file concept and the newly available FileCon-
nection API leaves the door open for a Trojan horse that
breaks out of the sandbox of Mobile Java.

The security flaw described in this paper helps quality
testers of mobile phones in finding similar security problems.
Given the unsecure link concept of the underlying operating
system (or possibly the unsecure access control mechanisms
of the file system), special care must be taken on those Java
APIs allowing file access. If those APIs are not checked
appropriately, they can be conveniently exploited by an at-
tacker to access security-critical system files, leading to a
complete take-over of the mobile phone.

In order to prevent a Trojan horse from overwriting sys-
tem files such as manufacturer certificates, these files can
be stored in a protected area. ARM processors, which are
usually incorporated into mobile phones, support the ARM
TrustZone technology [15]. This way, access to security-
critical files is only possible through secured API calls (Trust-
Zone API). The implementation of the protection domain
mechanism must then be adjusted, i.e., the module respon-
sible for checking the certificates would reside in the Trust-
Zone, which can only be accessed via the TrustZone API. In
the end, however, this approach only cures the symptoms.
The main problem still lies in faulty software. The Java hole
(and more generally, similar vulnerabilities in Java APIs for
mobile phones) can be avoided by integrating security into
the software development process [16]. Discussions with the
manufacturer revealed that a methodology for the security
analysis of Mobile Java platforms was desirable.

5. STATIC SECURITY ANALYSIS
We now sketch an approach to statically analyzing secu-

rity mechanisms of Mobile Java plattforms. This approach
comprises JML-related analysis tools in conjunction with
a reverse engineering tool, which helps one in extracting
security-relevant components from the source code.

JML-based analysis of Mobile Java. The basis of our
methodology is JML which in general is useful for specify-
ing detailed designs of Java classes and interfaces [2]. JML
can detail the pre- and postconditions for methods as well
as class invariants in the Design by Contract (DBC) style
[18]. JML has the advantage that its syntax is tailored to-
wards Java, i.e., the JML constraints can be specified as Java
comments that are ignored by a conventional Java compiler.
In addition, there is a variety of tools available that allow
one to check the JML constraints at run-time or even (in
part) statically [2]. These tools check that the code corre-
sponds to the JML specifications. In the following, we use
ESC/Java2 which statically can detect inconsistencies be-
tween the code and the specification using a built-in theorem
prover [2]. ESC/Java2 employs modular reasoning, analyz-
ing one method at a time and considering the specifications
(pre- and postconditions) rather than the whole code of the

methods being called.
We can employ JML to specify security requirements for

J2ME APIs, and check at compile-time that the implemen-
tation satisfies the requirements. Specifically, defining a
class invariant which forbids that the special characters oc-
cur in a file name can reveal the Java security hole described
in this paper. Note that invariants must hold at the end of
each Java constructor’s execution and at the beginning and
end of all methods. Hence, we even do not need to define a
pre- or postcondition for the rename() method because the
class invariant already encompasses that condition. This
would have helped the developers at Sony Ericsson to avoid
the Java hole even if they missed considering rename().
Since Sony Ericsson secured other APIs such as write() ap-
propriately, they knew in principle that Java APIs were not
allowed to create links—they only failed to secure rename().

The reference implementation for the FileConnection API,
for example, has a private field variable called fullPath of
type String which contains the file name. This variable can
be used to specify the aforementioned class invariant:
//@ invariant !fullPath.contains(".@").
Instead of the black-listing approach, which filters out for-
bidden characters, white-listing specifications should be used.
Then we can specify rules (as invariants) which file names
must satisfy.

In general, the security mechanisms for Mobile Java (e.g.,
the implementation of the protection domain concept) can
also be specified in JML and then analyzed by JML tools,
i.e., the approach is not restricted to the specific Java prob-
lem discussed in this paper. This even more applies when
security-critical Java Card applets are accessed from MI-
Dlets such as in the case of the SATSA API. For instance,
Gemalto, one of the world-leading smart card producers,
makes available the SIM Application Toolkit. MIDlets can
then call SIM Application Toolkit functionality via the SATSA
API [8]. In this case, JML tools can be employed to detect
API-level attacks on Java-based SIM cards [1].

The aforementioned approach can also be applied to other
Java-based mobile phone platforms. Two interesting candi-
dates are the BlackBerry platform [24] and Android [9], both
supporting Java. Due to the fact that large parts of Android
are made available as open source software, an analysis of
the source code is possible (in contrast to the proprietary
system of Sony Ericsson) and hence Android is an inter-
esting target for an external security analysis. Specifically,
the Java-based Android middleware implements a reference
monitor to mediate access to application components based
on permission labels. Security holes in this reference monitor
could be exploited to circumvent the whole compartmental-
ization mechanism of Android [4].

Architectural-level analysis. JML tools help in analyzing
Mobile Java’s security mechanisms as discussed above. How-
ever, one problem with static analysis tools like ESC/Java2
is that they do not scale. In particular, this applies to in-
variant checking, which must be carried out for all methods
and constructors. Hence, the analysis of a complete Java-
based platform is unrealistic, specifically, if dataflow condi-
tions such as the aforementioned invariant are to be consid-
ered [14]. In order to make a JML-based analysis feasible, it
is hence necessary to extract security relevant functionality
from the source code to simplify the dataflow analysis. In
general, a more abstract view on the code is desirable, e.g.,

to carry out analyses directly at the architectural level. For
these purposes, we propose to employ the functionality of a
reverse engineering tool such as Bauhaus [23].

In particular, Bauhaus lets one deduce the resource flow
graph (RFG) from the source code [23]. The RFG works
at a higher abstraction level than the source code and rep-
resents architecturally relevant information of the software,
i.e., it refers to the implemented software architecture. The
nodes of the RFG represent types (e.g., classes and inter-
faces), constants, member variables, and methods. Edges
represent various relationships between the nodes such as
the call graph relation, the types of a method’s signature,
and Use and Set relations, which indicate whether a member
variable is used or set within a method. Data and control
flow analyses can be conducted on the RFG.

With the help of graph search algorithms on the RFG, one
can create subgraphs of the RFG (so-called “views”), i.e.,
we conduct slicing at the architectural level. For example,
we can select data types, member variables, and methods,
which are used to implement the security functionality under
investigation (e.g., enforcement mechanisms). The resulting
“security views” are then used as input for the source code
analysis step employing ESC/Java2. This makes the source
code analysis more tractable.

6. RELATED WORK
There exist works concerning vulnerabilities of mobile phones

[19, 25, 30, 31]. Some vulnerabilities are caused by the inter-
action between mobile devices, the Internet, and telecommu-
nications networks [31]. Other mobile phone security prob-
lems are related to earlier versions of Symbian when there
was not much security incorporated before the advent of the
Symbian Signed initiative [28]. Moreover, well-known Sym-
bian worms such as CommWarrior [19] mostly spread only
via unsecured Bluetooth connections or MMS. Other ways
of infection such as e-mail were not exploited at that time
because e-mail was not widely used on mobile phones. In
contrast, we attacked a platform which seems to be suppos-
edly secure due to Java’s sandbox model. Thus, the level of
security should be similar to the Symbian Signed system. In
fact, not many attacks are known on Mobile Java with the
exception of Gowdiak’s attack on the byte code verifier of
Nokia mobile phones [25] although Java security problems in
general are well-demonstrated [17]. Recently, security holes
in Android’s Java-based middleware are reported [21].

There are also relations to Unix security, in particular,
Unix systems protect their symbolic links for a long time [7].
This way, the security hole demonstrates that old problems
solved in the desktop PC and workstation world crop up
again in new systems such as mobile phone platforms.

Our work can also be compared with works on code review
tools, which, for example, are discussed by Chess and West
[3]. Available (commercial) code review tools mostly deal
with common classes of security bugs such as buffer over-
flows, race conditions, and SQL injection vulnerabilities. In
contrast, we focus more on domain-specific security prob-
lems (e.g., for Java-based mobile phone platforms). Another
difference is that we additionally carry out our analysis at
the level of the software architecture. This helps to pinpoint
security-critical components of the software which thereafter
can be analyzed in more detail to make an analysis with JML
feasible. In addition, our analysis approach also resembles
the work by Poll et al. in which the Java Card API was

specified in JML. Thereafter, a component of a smart card
operation system was verified by means of JML’s run-time
assertion checker [22].

7. CONCLUSION AND OUTLOOK
By means of a security hole, we discussed the dangers that

may arise from mobile phones, specifically, if phone func-
tionality is combined with PC functionality. Due to the fact
that the functionality and the computational power of mo-
bile phones are still growing the risks will also increase, and
software security of mobile phones becomes an important
issue. In particular, a broken link concept together with an
error in the FileConnection API led to a security hole giv-
ing access to the entire internal file system. The hole can
be conveniently exploited using various security-critical Java
APIs. We demonstrated this with the help of a Java-based
Trojan horse. In this scenario, the privacy of the end user
was attacked without the victim’s knowledge.

Due to Java’s platform independence, most of Sony Eric-
sson’s mobile phone models are vulnerable such that a large
number of mobile phones can be attacked. Due to the fact
that other vendors also employ Enea OSE, mobile phones of
those vendors might at least also suffer from the unmediated
link vulnerability. Last but not least, the hole discussed in
this paper should be regarded as a case study; most of the
remarks would apply to future security holes and vulnerabil-
ities detected in mobile phones or smart phones in general.

There is room for further research. To tackle at least the
Java security issues of mobile phone platforms we intend
to employ JML and related tools in a follow-up research
project. Specifically, we can investigate how MIDlets and
Java Card applications for value-added services interact in
order to avoid security holes introduced at the API level. In
this context, domain-specific security rules can be defined
as JML annotations, which can be checked by supporting
tools such as Bauhaus and ESC/Java2. More generally, the
interplay between the security and reliability of telecommu-
nications infrastructures and mobile phone platform security
is also worth investigating.

8. REFERENCES
[1] M. Bond and R. Anderson. API-level attacks on

embedded systems. Computer, 34(10):67–75, 2001.

[2] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry,
G.-T. Leavens, K. Leino, and E. Poll. An overview of
JML tools and applications. In Proc. 8th Int’l
Workshop on Formal Methods for Industrial Critical
Systems (FMICS 03), pages 73–89, 2003.

[3] B. Chess and J. West. Secure Programming with Static
Analysis. Addison-Wesley, 2007.

[4] W. Enck, M. Ongtang, and P. McDaniel.
Understanding Android Security. IEEE Security and
Privacy, 7(1):50–57, 2009.

[5] Enea AB. OSE 5.0 Architecture, 2004.
http://www.enea.com.

[6] Enea AB. Enea Wins New Wireless Deal Worth
MSEK 30, 2008.
http://www.enea.com/Templates/NewsPage 24486.aspx.

[7] S. Garfinkel and G. Spafford. Practical Unix and
Internet Security. O’Reilly, 2nd edition, 1996.

[8] Gemalto S.A. Developer Suite V 3.0, 2007.

[9] Google Inc. Android—An Open Handset Alliance
Project, 2008.
http://code.google.com/android/documentation.html.

[10] M. Hypponen. Malware Goes Mobile. Scientific
American, 295(5):46–53, 2006.

[11] Java Community Process. List of all JSRs, 2007.
http://jcp.org/en/jsr/all.

[12] Java Community Process. Security and Trust API for
J2ME, 2007.
http://jcp.org/aboutJava/communityprocess/jsr177.

[13] JSR 118 Expert Group. Mobile
Information Device Profile for the Java 2 Micro
Edition Version 2.1, 2007.

[14] J. Kiniry. Personal communication, 2009.

[15] ARM Limited. ARM Security Technology Building a
Secure System using TrustZone Technology. White
Paper, 2009.

[16] G. McGraw. Software Security: Building Security In.
Addison-Wesley, 2006.

[17] G. McGraw and E. W. Felten. Securing Java: Getting
Down to Business with Mobile Code. Wiley, 2nd
edition, 1999.

[18] B. Meyer. Object-Oriented Software Construction, 2nd
Edition. Prentice-Hall, 1997.

[19] Nokia. Malware CommWarrior, 2005.

[20] Open Mobile Alliance. DRM Content
Format Approved Version 2.0, 2006.

[21] Open Source Cert Advisory. #2009-006—Android
improper package verification when using shared
UIDs, 2009.
http://www.ocert.org/advisories/ocert-2009-006.html.

[22] E. Poll, J. van den Berg, and B. Jacobs. Specification
of the Javacard API in JML. In Proceedings of the
Fourth Working Conference on Smart Card Research
and Advanced Applications, pages 135–154, 2001.

[23] A. Raza, G. Vogel, and E. Plödereder. Bauhaus—A
tool suite for program analysis and reverse
engineering. In Ada-Europe, volume 4006 of LNCS,
pages 71–82. Springer, 2006.

[24] Research in Motion. BlackBerry Enterprise
Solution – Security Technical Overview, 2008.
http://www.blackberry.net/products/software/-
server/exchange/security.shtml.

[25] S. Shankland. Mobile Java Hit with Security Scare,
October 2004. CNET News.

[26] Sun Microsystems. Connected Limited Device
Configuration Specification Version 1.1, 2003.

[27] Sun Microsystems. Java Card 2.2.2 Platform, 2006.
http://java.sun.com/products/javacard/specs.html.

[28] Symbian Ltd. Symbian Signed, 2006.
https://www.symbiansigned.com.

[29] P. Traynor, P. McDaniel, and T. La Porta. On Attack
Causality in Internet-Connected Cellular Networks. In
Proceedings of the USENIX Security Symposium
(Sec’07), August 2007.

[30] P. Traynor, V. Rao, T. Jaeger, P. McDaniel, and T. La
Porta. From mobile phones to responsible devices.
Technical report, Pennsylvania State University,
Network and Security Research Center, January 2007.

[31] trifinite.org group. Homepage, 2006.
http://trifinite.org.

